
ABSTRACT

Title of dissertation: DIGITAL MULTIMEDIA
FORENSICS AND ANTI-FORENSICS

Matthew C. Stamm, Doctor of Philosophy, 2012

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical and Computer Engineering

As the use of digital multimedia content such as images and video has in-

creased, so has the means and the incentive to create digital forgeries. Presently,

powerful editing software allows forgers to create perceptually convincing digital

forgeries. Accordingly, there is a great need for techniques capable of authenticating

digital multimedia content. In response to this, researchers have begun developing

digital forensic techniques capable of identifying digital forgeries. These forensic

techniques operate by detecting imperceptible traces left by editing operations in

digital multimedia content. In this dissertation, we propose several new digital

forensic techniques to detect evidence of editing in digital multimedia content.

We begin by identifying the fingerprints left by pixel value mappings and

show how these can be used to detect the use of contrast enhancement in images.

We use these fingerprints to perform a number of additional forensic tasks such

as identifying cut-and-paste forgeries, detecting the addition of noise to previously

JPEG compressed images, and estimating the contrast enhancement mapping used

to alter an image.

Additionally, we consider the problem of multimedia security from the forger’s

point of view. We demonstrate that an intelligent forger can design anti-forensic

operations to hide editing fingerprints and fool forensic techniques. We propose an

anti-forensic technique to remove compression fingerprints from digital images and

show that this technique can be used to fool several state-of-the-art forensic algo-

rithms. We examine the problem of detecting frame deletion in digital video and

develop both a technique to detect frame deletion and an anti-forensic technique to

hide frame deletion fingerprints. We show that this anti-forensic operation leaves

behind fingerprints of its own and propose a technique to detect the use of frame

deletion anti-forensics. The ability of a forensic investigator to detect both editing

and the use of anti-forensics results in a dynamic interplay between the forger and

forensic investigator. We use develop a game theoretic framework to analyze this

interplay and identify the set of actions that each party will rationally choose. Addi-

tionally, we show that anti-forensics can be used protect against reverse engineering.

To demonstrate this, we propose an anti-forensic module that can be integrated into

digital cameras to protect color interpolation methods.

DIGITAL MULTIMEDIA FORENSICS AND ANTI-FORENSICS

by

Matthew C. Stamm

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor K. J. Ray Liu, Chair/Advisor
Professor Min Wu
Professor Rama Chellappa
Professor Dianne P. O’Leary
Professor Lawrence C. Washington

c© Copyright by
Matthew C. Stamm

2012

Dedication

This dissertation is dedicated to my parents. They instilled in me a sense of

curiosity that has helped me choose my path in life. Without their love, support,

and encouragement, I would never have had the ability to walk it.

ii

Acknowledgments

I wish to begin by expressing my deepest thanks to my advisor, Prof. K. J.

Ray Liu. His encouragement helped me decide to pursue a Ph. D. and he has been

a constant source of guidance and support throughout my graduate career. He has

pushed me to achieve more than I thought possible and thanks to him I have grown

tremendously both intellectually and professionally. Most importantly, he has set

an example of the researcher, educator, and mentor that I aspire to be.

I would like to thank the members of my dissertation committee; Prof. Min

Wu, Prof. Rama Chellappa, Prof. Dianne O’Leary, and Prof. Lawrence Wash-

ington. I would like specially thank Prof. Wu and Prof Chellappa for acting as

references for me. I would also like to thank Prof. Adrian Papamarcou, Prof.

Jonathan Simon, and Prof. Steven Marcus for acting as references, helping with

various applications, and assisting me throughout my graduate career.

I would like to thank the members of the SIG and MAST groups, especially

Dr. Wan-Yi Lin, Dr. Steven Tjoa, Dr. Yan Chen, Xiaoyu Chu, and Zhung-Han Wu,

along with Dr. Ashwin Swaminathan, Dr. Avinash Varna, and Wei-Hong Chuang

for their friendship and interesting research discussions.

I would also like to thank all of my friends and family for believing in me,

encouraging me, and brightening my life. Special thanks are due to Lauren White for

her love and support. She lifted my spirits when I was down, constantly encouraged

me, and has made the past year one of the best of my life.

Most of all, I would like to thank my parents. Their unwaivering support

iii

and encouragement has helped me follow my dreams, and my love of learning is

due directly to them. For every trip to the science center, every nature walk they

took me on, every science experiment they performed with me, and every household

appliance which I took apart but could not put back together, I thank them. This

dissertation is as much theirs as it is mine.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Outline and Contributions 4

1.2.1 Image Forgery Detection Using Statistical Intrinsic Finger-
prints (Chapter 2) . 5

1.2.2 Forensic Estimation of Contrast Enhancement Mappings (Chap-
ter 3) . 6

1.2.3 Digital Image Compression Anti-Forensics (Chapter 4) 7
1.2.4 Temporal Forensics and Anti-Forensics for Digital Video (Chap-

ter 5) . 8
1.2.5 Protection Against Reverse Engineering in Digital Cameras

Using Anti-Forensics (Chapter 6) 9

2 Forensic Detection of Image Manipulation Using Statistical Intrinsic Finger-
prints 10
2.1 System Model and Assumptions . 13
2.2 Statistical Intrinsic Fingerprints of Pixel Value Mappings 18
2.3 Detecting Contrast Enhancement . 23

2.3.1 Detection of Globally Applied Contrast Enhancement 23
2.3.2 Detection of Locally Applied Contrast Enhancement 33
2.3.3 Histogram Equalization . 38

2.4 Detecting Additive Noise in Previously JPEG Compressed Images . . 45
2.4.1 Scale and Round Mapping . 46
2.4.2 Hypothesis Testing Scenario 47
2.4.3 Additive Noise Detection in Images 51

2.5 Summary . 55

3 Forensic Estimation and Reconstruction of a Contrast Enhancement Map-
ping 57
3.1 System Model . 57
3.2 Effects of Contrast Enhancement . 60
3.3 Estimation of the Contrast Enhancement Mapping and the Unaltered

Histogram . 61
3.4 Results . 66
3.5 Summary . 67

v

4 Anti-Forensics of Digital Image Compression 70
4.1 Anti-Forensic Framework . 73
4.2 JPEG Anti-Forensics . 79

4.2.1 JPEG Compression Overview 79
4.2.2 DCT Coefficient Quantization Fingerprint Removal 81

4.3 Wavelet-Based Image Compression Anti-Forensics 86
4.3.1 Wavelet-Based Compression Overview 87
4.3.2 DWT Coefficient Quantization Fingerprint Removal 90

4.4 Anti-Forensic Blocking Artifact Removal 96
4.5 Experimental Results . 97

4.5.1 JPEG Anti-Forensics . 98
4.5.2 Wavelet Anti-Forensics . 101
4.5.3 Anti-Forensic Deblocking . 104

4.6 Undetectable Image Tampering Using Anti-Forensics 109
4.7 Summary . 114

5 Temporal Forensics and Anti-Forensics for Digital Video 116
5.1 Frame Deletion Fingerprints . 120

5.1.1 Video Compression Overview 120
5.1.2 Detection of Frame Deletion or Addition 122
5.1.3 Temporal Fingerprint Model 126

5.1.3.1 Model for Fixed Length GOPs 127
5.1.3.2 Model for Variable Length GOPs 128

5.2 Detecting Frame Deletion . 129
5.3 Frame Deletion Anti-Forensics . 133
5.4 Detecting the Use of Frame Deletion Anti-Forensics 137
5.5 Performance Analysis and Tradeoff 141

5.5.1 Evaluating the Performance of Anti-Forensic Techniques . . . 141
5.5.2 Analysis the Interplay Between a Forger and Forensic Inves-

tigator Using Game Theory 144
5.6 Experiments and Results . 149

5.6.1 Frame Deletion Detection . 151
5.6.2 Frame Deletion Anti-Forensics 152
5.6.3 Detecting Frame Deletion Anti-Forensics 155
5.6.4 Game Theoretic Evaluation of Video Forensics and Anti-Forensics157

5.7 Summary . 160

6 Protection Against Reverse Engineering in Digital Cameras Using Anti-Forensics164
6.1 The Image processing pipeline . 165

6.1.1 Component Forensics . 166
6.2 Anti-Forensic Reverse Engineering Prevention 168
6.3 Simulations and Results . 172

6.3.1 Performance Metric . 172
6.3.2 Experimental Results . 172

6.4 Summary . 177

vi

7 Conclusions and Future Work 179
7.1 Conclusions . 179
7.2 Future Work . 182

Bibliography 184

vii

List of Tables

4.1 Blocking artifact detection rates. 105
4.2 Camera origin forgery classification results. 114

5.1 Nash equilibrium strategies k∗ and η∗ obtained for the forger and forensic inves-

tigator respectively at different constraints ξ on the forensic investigator’s total

probability of false alarm. 161

viii

List of Figures

1.1 Left: A digital image forgery of a missile test launch released by the Iranian

government. The falsified image regions are outlined. Right: The unaltered

image used to create the forgery [31]. 2

2.1 Left: Histogram of a typical image. Right: Approximation of the histogram at

left by sequentially removing then interpolating the value of each histogram entry. 15
2.2 Image sampling effects example. 16
2.3 Tampering fingerprint example showing the pixel value histograms of (a) a synthe-

sized image with a uniform pixel distribution and (b) a real world image captured

with a digital camera, the magnitude of the DFT of the histogram of (c) the syn-

thesized image and (d) the real image, the magnitude of the frequency domain

tampering fingerprints of (2.5) left in (e) the synthesized image and (f) the real

image, as well as the magnitude of the frequency domain intrinsic fingerprints of

(2.6) left in (e) the synthesized image and (f) the real image. 20
2.4 Pixel value histogram of (a) an unaltered image and (b) the same image after

contrast enhancement has been performed, as well as the magnitude of the DFT

of (c) the unaltered image’s histogram and (d) the contrast enhanced image’s

histogram. 27
2.5 Top: Image exhibiting high end histogram saturation. Left: Histogram of the

image’s green pixel values. Right: Magnitude of the DFT of the image’s green

pixel value histogram. 28
2.6 Contrast enhancement detection ROC curves for images altered by a power law

transformation with (b) γ = 1.1 using several values of the cutoff parameter c. . . 31
2.7 Contrast enhancement detection ROC curves for images altered by a power law

transformation with (b) 2.0 ≥ γ ≥ 1.2, and (c) 0.5 ≥ γ ≥ 0.9 as well as the

mapping displayed in Fig. (a). 32
2.8 ROC curves obtained using different testing block sizes for images altered by a

power law transformation with γ = 0.5 (top left), γ = 0.6 (top middle), γ = 0.7

(top right), γ = 0.8 (bottom left), and γ = 0.9 (bottom right). 36
2.9 Cut and paste forgery detection example showing (a) the unaltered image from

which an object is cut, (b) the unaltered image into which the cut object is

pasted, (c) the composite image, (d) red layer blockwise detections, (e) green layer

blockwise detections, and (f) blue layer blockwise detections. Blocks detected as

contrast enhanced are highlighted and boxed. 37
2.10 Cut and paste forgery detection results using 50 × 50 pixel blocks showing (a)

red layer blockwise detections, (b) green layer blockwise detections, (c) blue layer

blockwise detections, and (d) blockwise detections that occur across all three color

layers. 39
2.11 Histogram equalization detection ROC curves obtained (a) using the weighting

function defined in (2.22) and (b) using the weighting function defined in (2.23). 44
2.12 ROC curves obtained when differentiating between histogram equalization and

other forms of contrast enhancement. 45

ix

2.13 Example showing an unaltered image (top left), its normalized z1 histogram (mid-

dle left), and the magnitude of the DFT of its z1 histogram (bottom left), as well

as an altered version of the image to which unit variance Gaussian noise has been

added (top right), its normalized z1 histogram (middle right), and the magni-

tude of the DFT of its z1 histogram (bottom right). In both cases, the scaling

parameter was chosen to be c = 3

4
. 52

2.14 Additive noise detection ROC curve for images which were JPEG compressed us-

ing default camera settings then altered by adding unit variance Gaussian additive

noise. 53
2.15 Additive noise detection ROC curve for images which were JPEG compressed at

several different quality factors then altered by adding unit variance Gaussian

additive noise. 55

3.1 Left: Typical image captured by a digital camera. Right: Pixel value histogram

of the image shown above. 58
3.2 Approximation ĥ of the histogram shown in Fig. 3.1. 59
3.3 Distribution of ǫ values calculated from the histogram h shown in Fig. 3.1 and

its approximation ĥ shown in Fig. 3.2 . 60
3.4 Pixel value histogram of the image shown in Fig. 3.1 after contrast enhancement

has been applied. 61
3.5 Example of our estimation algorithm running across several iterations. Histogram

entries are initially uniquely color coded so that they can be tracked across each

iteration. Histogram entries share a common color in iterations 1 and 2 when the

current contrast enhancement estimate indicates that their corresponding pixel

values will be mapped to the same output pixel value. The histogram values of

these entries are estimated in accordance with our algorithm. 64
3.6 Left: Unaltered pixel value histogram and its estimate. Right: Contrast enhance-

ment mapping and its estimate. 66
3.7 Top Left: Unaltered pixel value histogram and its estimate. Top Right: Contrast

enhancement mapping and its estimate. Bottom: Pixel value histogram after

contrast enhancement. 68

4.1 Left: Histogram of DCT coefficients from an uncompressed image. Right: His-

togram of DCT coefficients from the same image after JPEG compression 76
4.2 Histogram of perturbed DCT coefficient values from a DCT subband in which all

coefficients were quantized to zero during JPEG compression. 85
4.3 Chrominance layer reconstruction interleaving pattern. 86
4.4 Left: Histogram of wavelet coefficients from an uncompressed image. Right:

Histogram of wavelet coefficients from the same image after SPIHT compression. 89
4.5 Left: JPEG compressed image using a quality factor of 65. Right: Anti-forensically

modified version of the same image. 99
4.6 Histogram of coefficient values from the (2,2) DCT subband taken from an un-

compressed version of the image shown in Fig. 4.5 (left), the same image after

JPEG compression (center), and an anti-forensically modified copy of the JPEG

compressed image(right). 100

x

4.7 Histogram of coefficient values from the DC DCT subband taken from an un-

compressed version of the image shown in Fig. 4.5 (left), the same image after

JPEG compression (center), and an anti-forensically modified copy of the JPEG

compressed image(right). 100
4.8 Left: An image compressed using the SPIHT algorithm at a bit rate of 3 bits per

pixel before the use of entropy coding. Right: The same image after anti-forensic

dither has been applied to its wavelet coefficients. 102
4.9 Histogram of wavelet coefficients from the fourth level HH subband of a four level

wavelet decomposition of the image shown in Fig. 4.8 (left), the same image after

SPIHT compression (center), and the compressed image after anti-forensic dither

has been applied (right). 103
4.10 Histograms of R1 and R2 blocking artifact detection statistics obtained from (a)

an uncompressed image, (b) the same image after JPEG compression using a

quality factor of 70, as well as the JPEG compressed version after it has been

deblocked using (c) our anti-forenic deblocking algorithm, (d) the deblocking

algorithm proposed by Liew and Yan, and (e) the deblocking algorithm proposed

by Zhai et al.. 106
4.11 Results of the proposed anti-forensic deblocking algorithm applied to a typical

image after it has been JPEG compressed using a quality factor of (a) 90, (b) 70,

(c) 50, (d) 30, and (e) 10 followed by the addition of anti-forensic dither to its

DCT coefficients. 108
4.12 Histogram of (3,3) DCT coefficients from an image JPEG compressed once using

a quality factor of 85 (Left), the image after being double JPEG compressed

using a quality factor of 75 followed by 85 (Center), and the image after being

JPEG compressed using a quality factor of 75, followed by the application of

anti-forensic dither, then recompressed using a quality factor of 85 (Right). . . . 111

5.1 Illustration of the effects of frame deletion on a video frame sequence. The original

video sequence is shown along the top of this figure and the altered video sequence

is shown along the bottom. Each GOP in the altered video contains frames from

two different GOPs in the unaltered video sequence. 123
5.2 P-frame prediction error sequence (top left) and the magnitude of its DFT (bot-

tom left) obtained from an unedited, MPEG compressed version of the ‘Carphone’

video sequence along with the P-frame prediction error sequence (top right) and

the magnitude of its DFT (bottom right) obtained from the same video after

frame deletion followed by recompression. 125
5.3 Example relating the anti-forensic effectiveness of an anti-forensic operation to

the ROC curves achieved by a forensic technique when anti-forensics is and is not

used. The anti-forensic effectiveness at a given false alarm level is the ratio A/B. 143
5.4 ROC curves for δfixed obtained by testing against different amounts frame dele-

tion and addition. 150
5.5 ROC curves for δvar obtained by testing against different amounts frame deletion

and addition. 152

xi

5.6 P-frame prediction error sequences (top row) and the magnitudes of their respec-

tive DFTs (bottom row) obtained from an untampered MPEG compressed version

of the ‘Foreman’ video (left column), as well as from the same video after the first

six frames were deleted followed by recompression without anti-forensic modifi-

cation (middle column) and with the use of our proposed anti-forensic technique

(right column). 153
5.7 Experimental results showing (a) ROC curves for δfixed and δvar and (b) anti-

forensic susceptibility plots for δfixed and δvar obtained by testing on anti-forensically

modified MPEG-2 videos. 154
5.8 ROC curves for the anti-forensics detector δmv when tested on video data com-

pressed using an exhaustive search to determine motion vectors and video data

encoded using a three step motion vector search algorithm. 155
5.9 Utility function of the forensic investigator U1(k, η) when the total probability of

false alarm constraint is PTot
fa = 8.3%. 158

5.10 Nash equilibrium ROC curve for video frame deletion detection. 159

6.1 A digital camera’s signal processing pipeline. 166
6.2 A digital camera’s internal processing pipeline with our proposed anti-forensic

module integrated into it. 169
6.3 Top: Changes in the effective area of each pixel after downsizing. Bottom: A

downsized color layer overlaid on the pixels of the original color layer. 171
6.4 Bilinear interpolation example. 171
6.5 Left: A typical image formed using bilinear color interpolation. Right: The same

image after being passed through our anti-forensic module. 174
6.6 Plot of downscaling amount vs. PC . 175
6.7 Plot of SSIM vs. PC . 177

xii

Chapter 1

Introduction

1.1 Motivation

In recent years, digital multimedia content has become ubiquitous throughout

society. High quality audio recorders along with digital image and video cameras

allow anyone to capture digital multimedia signals. Landline and mobile Internet

access allows users to access digital content virtually anywhere and at any time.

These conditions have led many governmental, legal, scientific, and news media

organizations to rely on digital multimedia content to make critical decisions, convey

information, and use as evidence of specific events.

Widespread reliance on digital content proves to be problematic, however, as

the rise of digital media has coincided with the widespread availability of digital

editing software. At present, a forger can easily manipulate digital content such as

images or video to create perceptually realistic forgeries. Take, for example, the

visually convincing image forgery shown in Fig. 1.1. This falsified image, which

was released by the Iranian government in 2008, was edited to cover up an unsuc-

cessful missile launch [31]. While this forgery was identified through careful visual

inspection, more sophisticated forgeries are likely to remain unnoticed. As a result,

many organizations desire some means of authenticating digital multimedia content

to avoid both embarrassment and legal ramifications.

1

Figure 1.1: Left: A digital image forgery of a missile test launch released by the Iranian gov-

ernment. The falsified image regions are outlined. Right: The unaltered image used to create the

forgery [31].

Previously, digital watermarking techniques have been proposed as a means of

providing multimedia security [10]. For watermarking techniques to be successful,

however, an extrinsic watermark must be inserted into the digital content by a

trusted source before any manipulation occurs. This is unrealistic in many scenarios,

because the party that captures the digital content can alter it before inserting the

watermark. Similarly, encryption techniques can prevent an unauthorized user from

accessing and altering a digital multimedia file, but they cannot prevent a file’s

creator from manipulating it before encryption.

In response to these challenges, the field of digital multimedia forensics has

been born. Digital multimedia forensics involves the study and development of tech-

niques to determine the authenticity, processing history, and origin of digital mul-

timedia content without relying on any information aside from the digital content

itself. This is done by making use of the fact that most signal processing operations

leave behind perceptually undetectable traces known as fingerprints in digital con-

tent similar to the way that a criminal leaves behind fingerprints at a crime scene.

2

By discovering these fingerprints and developing techniques to detect them, digital

forensics researchers can identify digital multimedia forgeries. Because most sig-

nal processing operations leave behind unique fingerprints, no universal method of

detecting digital forgeries exists. Instead, many forensic tests must be designed to

identify the fingerprints of a wide variety of digital content editing operations. It has

been posited that if a large set of forensic methods is developed, it will be difficult

for a forger to create a digital forgery capable of fooling all forensic authentication

techniques [5].

Though existing digital forensic techniques are capable of detecting several

standard digital media manipulations, they do not account for the possibility that

anti-forensic operations designed to hide traces of manipulation may be applied to

digital content. In reality, it is quite possible that a forger with a digital signal

processing background may be able to secretly develop anti-forensic operations and

use them to create undetectable digital forgeries. As a result, several multimedia

forensic techniques may possess vulnerabilities that are unknown to the forensic

community at large.

To protect against this scenario, it is crucial for researchers to develop and

study anti-forensic operations so that vulnerabilities in existing forensic techniques

may be known. This will help researchers to know when digital forensic results can

be trusted and may assist researchers in the development of improved digital forensic

techniques. Furthermore, the study of anti-forensic operations can also lead to the

identification of fingerprints left by anti-forensic operations and the development of

techniques capable of detecting when an anti-forensic operation has been used to

3

hide evidence forgery.

It is clear that the authentication of multimedia signals poses a great chal-

lenge to information security researchers. Not only must new forensic techniques

be developed, but anti-forensic techniques must also be uncovered and their effects

mitigated. The reactions of forgers to the development of more sophisticated foren-

sic methods must be predicted and the dynamic interplay between a forger and

forensic investigator must be understood. Additionally, unintended uses of forensic

techniques must be anticipated and protected against. In this dissertation, we ad-

dress these problems and show how information security can be provided through

the study of both digital forensics and anti-forensics.

1.2 Dissertation Outline and Contributions

From the above discussion, we can clearly see the need for forensic techniques

capable of authenticating digital multimedia signals. In this dissertation, we propose

several new forensic techniques designed to detect the use of a variety of multimedia

editing operations. Furthermore, we take the novel step of considering multimedia

signal authentication from the point-of-view of the forger. We propose a set of

anti-forensic operations and demonstrate that a forger can use them to fool state-

of-the-art forensic techniques. We show how both a forger and forensic investigator

can respond to the actions of each other, and develop a game theoretic framework

to understand the dynamic interaction between these two parties. Additionally,

we show how anti-forensics can be used to prevent the reverse engineering of digital

4

devices with forensic techniques. The rest of this dissertation is organized as follows.

1.2.1 Image Forgery Detection Using Statistical Intrinsic Fingerprints

(Chapter 2)

In order to compensate for poor or undesirable lighting conditions, a forger will

often perform contrast enhancement on an image. Contrast enhancement encom-

passes a number of widely used image editing operations such as gamma correction

or histogram equalization. Each of these techniques operate by applying a nonlinear

mapping to an image’s pixel values.

In this chapter, we show that pixel value mappings leave behind statistical

traces, which we shall refer to as a mapping’s intrinsic fingerprint, in an image’s

pixel value histogram. We develop a model of the forensically significant properties

of the histogram of an unaltered image and use this model to identify diagnostic

features of a mapping’s intrinsic fingerprint. We then propose forensic techniques for

detecting general forms of globally and locally applied contrast enhancement. We

demonstrate that localized contrast enhancement can be used to identify cut-and-

paste forgeries. We identify the specific intrinsic fingerprints of histogram equaliza-

tion and propose a method to detect if histogram equalization was used to perform

contrast enhancement on an image.

Additionally, we propose a method to detect the global addition of noise to

a previously JPEG compressed image. We do this by observing that the intrinsic

fingerprint of a specially chosen pixel value mapping will be altered if it is applied to

5

an image’s pixel values after the addition of noise. Through a number of simulations,

we test the efficacy of each proposed forensic technique. Our simulation results show

that aside from exceptional cases, all of our detection methods are able to correctly

detect the use of their designated image processing operation with a probability of

99% given a false alarm probability of 7% or less.

1.2.2 Forensic Estimation of Contrast Enhancement Mappings (Chap-

ter 3)

Once evidence of editing has been identified in a digital multimedia file, a

series of new questions arise for a forensic investigator. For example, a forensic

investigator may wish to learn specific details of how the file was altered and what

parameters the forger used when applying the editing operation. Additionally, the

forensic investigator may wish to ascertain as much information as possible about

the multimedia file before it was altered.

In this chapter, we address these questions in context of contrast enhanced

digital images. We propose an iterative algorithm to jointly estimate any arbitrary

contrast enhancement mapping used to modify an image as well as the pixel value

histogram of the image before contrast enhancement. To do this, we use a prob-

abilistic model of an image’s pixel value histogram to determine which histogram

entries are most likely to correspond to contrast enhancement artifacts. Experimen-

tal results are presented to demonstrate the effectiveness of our proposed method.

6

1.2.3 Digital Image Compression Anti-Forensics (Chapter 4)

As society has become increasingly reliant upon digital images to communi-

cate visual information, a number of forensic techniques have been developed to

verify the authenticity of digital images. Amongst the most successful of these are

techniques that make use of an image’s compression history and its associated com-

pression fingerprints. Little consideration has been given, however, to anti-forensic

techniques capable of fooling forensic algorithms. In this chapter, we present a set

of anti-forensic techniques designed to remove forensically significant indicators of

compression from an image. We do this by first developing a generalized framework

for the design of anti-forensic techniques to remove compression fingerprints from

an image’s transform coefficients. This framework operates by estimating the dis-

tribution of an image’s transform coefficients before compression, then adding anti-

forensic dither to the transform coefficients of a compressed image so that their

distribution matches the estimated one. We then use this framework to develop

anti-forensic techniques specifically targeted at erasing compression fingerprints left

by both JPEG and wavelet-based coders.

Additionally, we propose a technique to remove statistical traces of the block-

ing artifacts left by image compression algorithms that divide an image into segments

during processing. Through a series of experiments, we demonstrate that our anti-

forensic techniques are capable of removing forensically detectable traces of image

compression without significantly impacting an image’s visual quality. Furthermore,

we show how these techniques can be used to render several forms of image tam-

7

pering such as double JPEG compression, cut-and-paste image forgery, and image

origin falsification undetectable through compression history based forensic means.

1.2.4 Temporal Forensics and Anti-Forensics for Digital Video (Chap-

ter 5)

Due to the ease with which digital information can be altered, many digital

forensic techniques have been developed to authenticate multimedia content. Sim-

ilarly, a number of anti-forensic operations have recently been designed to make

digital forgeries undetectable by forensic techniques. However, like the digital ma-

nipulations they are designed to hide, many anti-forensic operations leave behind

their own forensically detectable traces. As a result, a digital forger must balance

the tradeoff between completely erasing evidence of their forgery and introducing

new evidence of anti-forensic manipulation. Because a forensic investigator is typ-

ically bound by a constraint on the probability of false alarm (Pfa), the accuracy

of detecting forgeries must be balanced with the accuracy of detecting the use of

anti-forensics.

In this chapter, we analyze the interaction between a forger and a forensic

investigator by examining the problem of authenticating digital videos. Specifically,

we study the problem of adding or deleting a sequence of frames from a digital

video. We begin by developing a theoretical model of the forensically detectable

fingerprints that frame deletion or addition leaves behind, then use this model to

improve upon the video frame deletion or addition detection technique proposed by

8

Wang and Farid. Next, we propose an anti-forensic technique designed to fool video

forensic techniques and develop a method for detecting the use of anti-forensics. We

introduce a new set of techniques for evaluating the performance of anti-forensic

operations and develop a game theoretic framework for analyzing the interplay be-

tween a forensic investigator and a forger. We use these new techniques to evaluate

the performance of each of our proposed forensic and anti-forensic techniques, and

identify the optimal actions of both the forger and forensic investigator.

1.2.5 Protection Against Reverse Engineering in Digital Cameras Us-

ing Anti-Forensics (Chapter 6)

One important set of forensic techniques operates by estimating signal pro-

cessing components of a digital camera’s signal processing pipeline, then using these

estimates to perform forensic tasks such as camera identification or forgery detec-

tion. However, because these techniques are capable of estimating a camera’s inter-

nal signal processing components, these forensic techniques can be used for reverse

engineering. In this chapter, we propose integrating an anti-forensic module into

a digital camera’s processing pipeline to protect against forensic reverse engineer-

ing. Our proposed technique operates by removing linear dependencies amongst

an output image’s interpolated color values and by disrupting the color sampling

grid. Experimental results show that our proposed technique can be effectively used

to protect against the forensic reverse engineering of key components of a digital

camera’s processing pipeline.

9

Chapter 2

Forensic Detection of Image Manipulation Using Statistical Intrinsic

Fingerprints

One of the primary goals of digital image forensics is the identification of

images and image regions which have undergone some form of manipulation or

alteration. Because of the ill-posed nature of this problem, no universal method

of detecting image forgeries exists. Instead, a number of techniques have been

proposed to identify image alterations under a variety of scenarios. While each of

these methods possesses their own limitations, it has been posited that if a large set

of forensic methods are developed, it will be difficult for a forger to create an image

capable of fooling all image authentication techniques [5].

Previous image forensic work has dealt with the identification of computer

generated objects within an image [29] as well as detecting lighting angle inconsis-

tencies [20], [18]. Inconsistencies in chromatic aberration [19] as well as the absence

of CFA interpolation induced correlations [35] have been used to identify inauthentic

regions of an image. Classifier based approaches have been proposed which identify

image forgeries using a variety of statistical features [30], [2], [1]. Though these

techniques are capable of detecting that an image has undergone some form of ma-

nipulation, they are unable to determine how an image has been altered beyond the

identification of manipulated image regions.

10

One set of digital forensic techniques aimed at detecting image tampering has

grown out of research into imaging device identification. Forensic imaging device

identification methods attempt to determine the type of device used to capture

an image, ascertain the device manufacturer or model, and identify the particular

imaging device used [53]. These methods generally perform identification by esti-

mating some device specific parameter such as color filter array (CFA) interpolation

coefficients or sensor noise. Image forgery detection techniques have been proposed

which operate by locating inconsistencies in these parameters [5], [27], or by using

these parameters to estimate a tampering filter [52]. While these techniques are

quite effective, they too suffer the drawback of being unable to identify the use of

specific image altering operations.

It is important to note that most image altering operations leave behind dis-

tinct, traceable “fingerprints” in the form of image alteration artifacts. Because

these fingerprints are often unique to each operation, an individual test to catch

each type of image manipulation must be designed. While detecting image forg-

eries using these techniques requires performing a large set of operation-specific

tests, these methods are able to provide insight into the specific operations used

to manipulate an image. Prior work which identifies image tampering by detect-

ing operation specific fingerprints includes the detection of resampling [34], double

JPEG compression [33], [32], [28], as well as the parameterization of gamma cor-

rection [8]. Methods for detecting image forgeries have been proposed by detecting

local abnormalities in an image’s signal to noise ratio [33]. Additionally, the efficient

identification of copy and move forgeries has been studied [11].

11

In this work, we show that with the exception of the identity mapping, pixel

value mappings leave behind statistical artifacts which are visible in an image’s pixel

value histogram. We refer to these artifacts as the intrinsic fingerprint of a pixel

value mapping. By observing the common properties of the histograms of unaltered

images, we are able to build a model of an unaltered image’s pixel value histogram.

We then use this model to identify diagnostic features of a pixel value mapping’s

intrinsic fingerprint. Because a number of image processing operations are in essence

pixel value mappings, we propose a set of image forgery detection techniques which

operate by detecting the intrinsic fingerprint of each operation. Specifically, we

propose methods for detecting general forms of globally and locally applied contrast

enhancement, as well as a method for identifying the use of histogram equalization,

a commonly used form of contrast enhancement. Additionally, we propose a method

to detect the global addition of noise to a previously JPEG compressed image by

detailing the effect of noise on the fingerprint of a known pixel value mapping applied

to the image in question.

While much of this work focuses on detecting operations which alter the per-

ceptual qualities of an image as opposed to more obviously malicious tampering,

detecting the image manipulations discussed in this work is still forensically sig-

nificant. The detection of globally applied contrast enhancement provides insight

into an image’s processing history and may be useful prior information for other de-

tection algorithms. Furthermore, contrast enhancement operations may be locally

applied to disguise visual clues of image tampering. Localized detection of these

operations can be used as evidence of cut-and-paste type forgery. Additive noise

12

may be globally applied to an image not only to cover visual evidence of forgery, but

also in an attempt to destroy forensically significant indicators of other tampering

operations. Though the detection of these types of operations may not necessarily

pertain to malicious tampering, they certainly throw in doubt the authenticity of

the image and its content.

This chapter is organized as follows. In Section 2.1, we describe the forensically

significant qualities of an unaltered image’s pixel value histogram. In Section 2.2 we

define the intrinsic fingerprint of a pixel value mapping. We describe our proposed

contrast enhancement detection techniques in Section 2.3. Included are methods

for detecting both globally and locally applied contrast enhancement as well as a

method for identifying histogram equalization. We develop a method for detecting

the addition of noise to a previously JPEG compressed image in Section 2.4. Ex-

periments designed to test the efficacy of each forensic scheme as well as simulation

results are discussed after each detection method is proposed. We summarize this

chapter in Section 2.5.

2.1 System Model and Assumptions

In this work, we consider digital images created by using an electronic imaging

device to capture a real world scene. We adopt the following model of the digital

capture process. Each pixel is assigned a value by measuring the light intensity

reflected from a real world scene onto an electronic sensor over the area pertaining

to that pixel. Inherent in this process is the addition of some zero mean sensor noise

13

which arises due to several phenomena including shot noise, dark current, and on-

chip amplifier noise [17]. For color images, it is often the case that the light passes

through a color filter array so that only one color component is measured at each

pixel location in this fashion. If this is the case, the color components not observed

at each pixel are determined through interpolation. At the end of this process, the

pixel values are quantized, then stored as the unaltered image.

When analyzing a digital image, a histogram h(l) of the color or gray level

values l recorded at each pixel can be generated by creating L equally spaced bins

which span the range of possible pixel values, then tabulating the number of pixels

whose value falls within the range of each bin. Unless otherwise specified, we will

hereafter assume that all gray level values lie in the set P = {0, . . . , 255}, all color

values lie in the set P3, and that all pixel value histograms are calculated using 256

bins so that each bin corresponds to a unique gray or color layer value. After viewing

the pixel value histograms of several camera generated images corresponding to a

variety of scenes, we have observed that these histograms share common properties.

None of the histograms contain sudden zeros or impulsive peaks. Furthermore,

individual histogram values do not differ greatly from the histogram’s envelope.

To unify these properties, which arise due to observational noise [17], sampling

effects, and complex lighting environments, we describe pixel value histograms as

interpolatably connected. We denote an interpolatably connected histogram as one

where any histogram value h(l) can be approximated by ĥ(l), the interpolated value

of the histogram at pixel value l calculated using a cubic spline given h(t) for all

t ∈ P \l. The histogram of a typical unaltered image as well as its approximation

14

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

h(l)

Pixe l Value l

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Pixe l Value l

ĥ(l)

Figure 2.1: Left: Histogram of a typical image. Right: Approximation of the histogram at left

by sequentially removing then interpolating the value of each histogram entry.

ĥ, where each value of ĥ has been calculated by removing a particular value from h

then interpolating this value using a cubic spline, are shown in Fig. 2.1. As can be

seen in this example, there is very little difference between the image’s histogram

and its approximation.

To justify this model, we compiled a database of 341 unaltered images captured

using a variety of digital cameras. We obtained each image’s pixel value histogram

h, as well as its approximated histogram ĥ, where each value ĥ(x) was interpolated

using cubic spline interpolation. We then calculated the mean squared error between

ĥ and h along with the signal power of h to obtain a signal to noise ratio (SNR). The

mean SNR of all image’s histograms in the test database was 30.67 dB, reinforcing

the notion that an image’s pixel value histogram can be modeled as an interpolatably

connected function.

There does exist one naturally occurring phenomena, which we refer to as

histogram saturation, that may cause an unaltered image’s pixel value histogram

to contain an impulsive peak at one of two possible locations. High end histogram

15

Figure 2.2: Image sampling effects example.

saturation effects occur in images corresponding to especially bright scenes where

the dynamic range of the observed light intensity values extends well above the cutoff

for the maximum pixel value. Because these pixels must be assigned the maximum

pixel value of 255, a disproportionate number of pixels will take this value resulting

in an impulsive peak at in the high end of an image’s histogram. Low end saturation

effects occur in unusually dark images, where a large number of pixels taking the

value 0 will cause an impulsive peak to occur at the low end of an image’s histogram.

While low end histogram saturation occurs less frequently than high end saturation,

we have observed it in several unaltered images.

To explain why our histogram model is appropriate for digital images, consider

the simple case of imaging a scene consisting of two distinct color regions shown in

Fig. 2.2. Instinctively, we might assume that the histogram of this image would

consist of zeros everywhere except for two impulses located at the pixel values cor-

responding to each of the two colors present in this scene. Such a histogram would

obviously violate our model. In this scenario, however, the border between the color

16

regions does not align with the pixel boundaries on the sensor of the imaging device,

denoted by the grid. Many pixels lying along the color border correspond to sensor

areas containing both colors. The resulting values of each of these pixels will lie

in the convex hull of the values corresponding to each of the two colors present in

the scene. The introduction of these new pixel values will effectively ‘smooth out’

the pixel value histogram. Additionally, in the case of a color image, color values

not observed at a particular pixel location must be interpolated because of the use

of a CFA. The value of these interpolated pixels will also lie in the convex hull of

their neighbors values and further smooth the histogram, resulting in one which is

interpolatably connected.

Due to the complexity of real world scenes, it is exceedingly unlikely that the

all color borders in an image will align directly with the pixel borders on an imaging

device’s sensor. Because of this, the effect described above should be present in

virtually all real world images. Furthermore, additional factors contribute to the

‘connectivity’ of pixel value histograms of images captured by digital cameras. The

complex nature of most natural and man-made lighting environments rarely result

in a real world scene consisting of several distinct colors with no shading. Instead,

a continuum of colors and illumination levels normally exist. Furthermore, the

presence of observational noise will slightly change the value of several pixels during

the image capture process, thus further smoothing the histogram and resulting in

one which is interpolatably connected.

17

2.2 Statistical Intrinsic Fingerprints of Pixel Value Mappings

A number of image processing operations, such as contrast enhancement, ei-

ther include or can be specified entirely by a pixel value mapping. As is the case

with most image processing operations, pixel value mappings leave behind distinct,

forensically significant artifacts. These artifacts, which we will refer to as the in-

trinsic fingerprint of a pixel value mapping m, manifest themselves primarily in an

image’s pixel value histogram. To understand the effect of a pixel value mapping on

an image’s histogram, let us define x ∈ P as a pixel value present in an unaltered

image and y ∈ P as the value that m maps x to such that

y = m(x). (2.1)

Using this equation, the relationship between the pixel value histogram hX of the

unaltered image and the pixel value histogram hY of the same image after its pixel

values have been subjected to the mapping m can be written as

hY (l) =
255
∑

t=0

hX(t)1(m(t) = l), (2.2)

where 1(·) denotes the indicator function. As a consequence, all entries in hY must

take a value of either zero or the sum of several entries in hX . Furthermore, any

time n unaltered pixel values are mapped to the same output value, n− 1 entries in

hY must take a value of zero.

We now define the intrinsic fingerprint of m as

fm(l) = hY (l)− hX(l)

=
255
∑

t=0

hX(t)1(m(t) = l)− hX(l),

(2.3)

18

which represents the change in the image’s pixel value histogram due to the ap-

plication of the mapping m. We can see that though the pixel value mapping is

deterministic, its fingerprint depends on the image’s histogram statistics. In sub-

sequent sections it will be useful to examine a frequency domain representation of

fm(l). Letting m̂(l) = m(l) − l, the discrete Fourier transform (DFT) of fm(l) can

be written as

Fm(k) = DFT{fm(l)}

=
255
∑

l=0

hX(l)

(

e−j
πkm̂(l)
128 − 1

)

e−j
πkl
128

= −2j
255
∑

l=0

hX(l) sin
(

k πm̂(l)
256

)

e
−j

πk
128

(

m̂(l)
2

+l

)

.

(2.4)

By examining equations (2.3) and (2.4), we can see that the intrinsic fingerprint

is characterized not only by m(l), but by hX(l) as well. Despite this, the intrinsic

fingerprints left in two images with different pixel value histograms will be quite

similar. In the frequency domain, a mapping’s tampering fingerprint consists of a

linear combination of sinusoids whose frequencies are determined by m̂(l), which is

nonzero only when m(l) 6= l. While the value of hX(l) affects the weight of each

sinusoid in the summation, the presence and frequency of each sinusoid, and hence

the basic structure of the intrinsic fingerprint, is determined by m.

Fig. 2.3 shows an example illustrating the similarity between fingerprints

left in images with different pixel value histograms by a common mapping. As a

reference, the pixel value histograms of a synthesized image with a uniform pixel

values distribution and a typical image captured by a digital camera are shown in

Figs. 2.3(a) and (b) respectively. The DFT of both histograms are shown in Figs.

19

0 50 100 150 200 250
0

50

100

150

200

250

300

Pixel Value x

h X
(x

)
(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

Pixel Value x

h X
(x

)

(b)

−pi −pi/2 0 pi/2 pi
0

1

2

3

4

5

6

7
x 10

ω

H
(ω

)

(c)

−pi −pi/2 0 pi/2 pi
0

0.5

1

1.5

2

2.5

3

3.5
x 10

ω

H
(ω

)

(d)

−pi −pi/2 0 pi/2 pi
0

100

200

300

400

500

600

ω

F
m

(ω
)

(e)

−pi −pi/2 0 pi/2 pi
0

1

2

3

4

5

6
x 10

ω

F
m

(ω
)

(f)

−pi −pi/2 0 pi/2 pi
0

0.5

1

1.5

2

2.5

3
x 10

ω

F
m

(ω
)

(g)

−pi −pi/2 0 pi/2 pi
0

0.5

1

1.5

2

2.5
x 10

ω

F
m

(ω
)

(h)

Figure 2.3: Tampering fingerprint example showing the pixel value histograms of (a) a synthe-

sized image with a uniform pixel distribution and (b) a real world image captured with a digital

camera, the magnitude of the DFT of the histogram of (c) the synthesized image and (d) the real

image, the magnitude of the frequency domain tampering fingerprints of (2.5) left in (e) the syn-

thesized image and (f) the real image, as well as the magnitude of the frequency domain intrinsic

fingerprints of (2.6) left in (e) the synthesized image and (f) the real image.

20

2.3(c) and (d). As can be seen, these histograms differ significantly in both the pixel

value and frequency domains. Next, the intrinsic fingerprints left in each image’s

histogram by the mapping

m(l) =















l if l 6= 100

l + 1 if l = 100,

(2.5)

are compared. This mapping alters only one pixel value and is one of the simplest

possible pixel value mappings. In this case, the intrinsic fingerprint left in each

image’s histogram will differ only by a scaling factor. This can be seen in Figs.

2.3(e) and (f), which show the magnitude of the frequency domain representation of

each fingerprint. Finally, the intrinsic fingerprints left by the pixel value mapping

m(l) = round(7
11
l), (2.6)

are compared. This mapping is more complex than the previously considered map-

ping, and affects several pixel values. Figs. 2.3(g) and (h) show the magnitude of

the frequency domain representation of each fingerprint. Though these fingerprints

differ by more than a simple scaling factor, they share several identifying features

including local peaks at ω = ±0.9081, ±1.8162, and ±2.7243 radians, where

ω =















kπ
128

if 0 ≤ k < 128,

(k−256)π
128

if 128 ≤ k ≤ 255.

(2.7)

In subsequent sections, we use intrinsic fingerprints along with our histogram

model to identify evidence of image tampering. When examining a potentially

altered image, if the histogram of unaltered pixel values is known, the tampering

fingerprint can be obtained using (2.3). If the tampering fingerprint is zero for all

21

l, one can conclude that a pixel value mapping was not used to alter the image.

Alternatively, if the tampering fingerprint is nonzero for any values of l, it can be

used to help determine the mapping used to alter the image. In most real scenarios,

however, one has no a priori knowledge of an image’s pixel value histogram, thus the

tampering fingerprint cannot be calculated. Despite this, we are able to ascertain

the presence of a tampering fingerprint by determining identifying features of a

mapping’s intrinsic fingerprint and searching for their presence in the histogram of

the image in question. Furthermore, we reduce the number of false detections by

using our histogram model to separate naturally occurring histogram features from

those which correspond to a pixel value mapping’s intrinsic fingerprint.

It is important to note that the concept of an intrinsic fingerprint extends

to any monotonically increasing mapping, aside from the identity mapping, ap-

plied to discrete-valued data. For example, when an image undergoes double JPEG

compression, its DCT coefficients are doubly quantized according to the mapping

y = q2 round(
q1
q2
round(x

q1
)) where q1 and q2 are the quantization steps used. The

periodic DCT coefficient histogram artifacts used in [33], [32], and [28] to identify

double JPEG compression correspond to key features of the intrinsic fingerprint of

this mapping. In fact, any time that an identifying feature of a mapping’s intrin-

sic fingerprint can be determined, it can be used to detect the application of that

mapping.

22

2.3 Detecting Contrast Enhancement

In this section, we identify the intrinsic fingerprints of contrast enhancement

mappings and use them to develop a set of image forensic techniques capable of

detecting if an image has undergone contrast enhancement. While prior image

forensic work has studied gamma correction [8], [33], this work assumes that the

forensic examiner knows which specific type of contrast enhancement may have

been applied and that the contrast enhancement mapping can be described by a

simple parametric equation. Here, we present a detection approach which can be

used to detect more general contrast enhancement operations and which requires

no a priori knowledge of the form of contrast enhancement potentially applied.

We begin by discussing a method for detecting the global application of contrast

enhancement which operates by identifying histogram features indicative of general

contrast enhancement fingerprints [40]. Next, we extend this technique into one

capable of detecting locally applied contrast enhancement and show how it can be

used to detect certain cut-and-paste image forgeries. Additionally we present a

method for identifying the use of histogram equalization, a specific form of contrast

enhancement, by identifying histogram features unique to its intrinsic fingerprint.

2.3.1 Detection of Globally Applied Contrast Enhancement

Contrast enhancement operations seek to increase the dynamic range of pixel

values within an image. Most globally applied contrast enhancement operations

accomplish this by applying a nonlinear mapping to the values of each pixel in

23

the image, as described in Section 2.2. In order to detect these operations, we

must therefore detect the use of any pixel value mapping employed by a contrast

enhancement operation. Without excluding any commonly used forms of contrast

enhancement, we assume that all pixel value mappings in question are monotonically

increasing. By considering only monotonic pixel value mappings, we purposefully

exclude mappings which consist of a simple reordering of pixel values. As was previ-

ously mentioned, we detect the use of global contrast enhancement by identifying a

characteristic feature of all monotonically increasing pixel value mappings (exclud-

ing the identity mapping), then use this feature in conjunction with our histogram

model to ascertain whether the pixel value histogram of an image corresponds to a

contrast enhanced image or an unaltered one.

In order to identify a diagnostic feature for contrast enhancement operations,

let us first consider the effect of applying the mapping mτ+, defined as

mτ+(l) =















l if l 6= τ ,

l + 1 if l = τ ,

(2.8)

to an image with pixel value histogram hX , resulting in an altered image with

pixel value histogram hY . This mapping is significant because any monotonically

increasing pixel value mapping, aside from the identity mapping, can be formed by

the proper composition of the mappings mτ+ and mτ− using various values of τ ,

where mτ− is defined as

mτ−(l) =















l if l 6= τ ,

l − 1 if l = τ .

(2.9)

Furthermore, let hX(τ) = a and hX(τ + 1) = b; therefore after the mapping mτ+ is

24

applied to the image, the altered image’s histogram values at τ and τ + 1 will be

hY (τ) = 0 and hY (τ +1) = a+ b. The square of the Euclidean norm of hX , denoted

by ‖hX‖
2
2, will be less than that of hY because

‖hX‖
2
2 =

∑

l

hX(l)
2

=
∑

l 6=τ,τ+1

hX(l)
2 + a2 + b2

≤
∑

l 6=τ,τ+1

hX(l)
2 + (a+ b)2

= ‖hY ‖
2
2.

(2.10)

By Parseval’s theorem, the energy of the DFT of hY must be greater than or equal to

the energy of the DFT of hX , however, this increase in energy cannot be realized in

the DC coefficient because the total number of pixels in the image remains constant.

An identical result can be proved for the mapping mτ−.

Because all monotonically increasing contrast enhancement mappings can be

formed using the proper composition of the mappings mτ+ and mτ−, all contrast

enhancement mappings result in an increase in energy within the image’s pixel value

histogram. This increase in energy corresponds to the energy of the intrinsic fin-

gerprint left by the contrast enhancement mapping. In our experiments, we have

observed that the increase in energy tends to be spread across the frequency spec-

trum, excluding the DC component which must remain constant. By contrast, since

we model an unaltered image’s histogram as an interpolatably connected function,

we expect the histogram’s DFT H(k) to be a strongly low-pass signal. As a result,

the presence of an appreciable amount of energy in the high frequency regions of

H(k) is indicative of contrast enhancement.

25

An alternate way of viewing this phenomena is to observe that locally contrac-

tive regions of a contrast enhancement mapping will cause multiple distinct input

pixel values to be mapped to the same output pixel value. This will result in an

isolated peak in the histogram of the contrast image at the common output pixel

value. Similarly, locally expansive regions of a contrast enhancement mapping will

cause adjacent input pixel values to be mapped apart, resulting in sudden gaps in

the histogram of the enhanced image. Because these peaks and gaps are impulsive

in nature, they will result in the presence of a significant high frequency component

in H(k). The bottom two plots of Fig. 2.4 show the frequency domain representa-

tions of the histogram of a typical image before and after it has undergone contrast

enhancement.

Though an image’s pixel value histogram is typically low-pass, this is not

the case for an image whose histograms exhibit saturation effects. The impulsive

component present in a saturated image’s pixel value histogram will cause a DC

offset to occur in its histogram’s frequency domain representation which may be

mistaken for the fingerprint of a contrast enhancement mapping. An example of

this can be seen in Fig. 2.5, which shows a high end saturated image, its pixel value

histogram, and the frequency domain representation of its histogram.

In light of these observations, we propose a technique which detects contrast

enhancement by measuring the strength of the high frequency components of an

image’s pixel value histogram, then comparing this measurement to a predefined

threshold. To prevent unaltered images exhibiting histogram saturation effects from

yielding large high frequency measurements indicative of contrast enhancement map-

26

0

2000

4000

6000

8000

10000

12000

h(
l)

Pixel value l
0 50 100 150 200 250

(a)

0

2000

4000

6000

8000

10000

12000

h(
l)

Pixel value l
0 50 100 150 200 250

(b)

−pi −pi/2 0 pi/2 pi
0

2

4

6

8

10

12

14
x 10

5

ω

H
(ω

)

(c)

−pi −pi/2 0 pi/2 pi
0

2

4

6

8

10

12

14
x 10

5

ω

H
(ω

)

(d)

Figure 2.4: Pixel value histogram of (a) an unaltered image and (b) the same image after contrast

enhancement has been performed, as well as the magnitude of the DFT of (c) the unaltered image’s

histogram and (d) the contrast enhanced image’s histogram.

27

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

h(
l)

Pixel value l
0 50 100 150 200 250 −pi −pi/2 0 pi/2 pi

0

2

4

6

8

10

12

14
x 10

5

ω

H
(ω

)

Figure 2.5: Top: Image exhibiting high end histogram saturation. Left: Histogram of the image’s

green pixel values. Right: Magnitude of the DFT of the image’s green pixel value histogram.

ping fingerprints, we modify an image’s histogram before testing so that it is free

from saturation effects. This modified histogram g(l) is obtained by performing the

elementwise multiplication between h(l) and a ‘pinch off’ function p(l) so that

g(l) = p(l)h(l), (2.11)

where

p(l) =































1
2
− 1

2
cos (πl

Np
) l ≤ Np,

1
2
+ 1

2
cos
(

π(l−255+Np)

Np

)

l ≥ 255−Np,

1 else,

(2.12)

and Np is the width of the region over which p(l) decays from 1 to 0. The pinch

off function is designed to both remove impulsive histogram components which may

28

occur due to saturation effects as well as to minimize the frequency domain effects

of multiplying h(l) by p(l), which behaves similarly to a windowing function.

We calculate E, a normalized measure of the energy in the high frequency

components of the pixel value histogram, from g(l) according to the formula

E =
1

N

∑

k

|β(k)G(k)|, (2.13)

where N is the total number of pixels in the image, G(k) is the DFT of g(l), and

β(l) is a weighting function which takes values between 0 and 1. The purpose of

β(l) is to deemphasize low frequency regions of G(l) where nonzero values do not

necessarily correspond to contrast enhancement artifacts. In this work, we use the

simple cutoff function

β(k) =















1 c ≤ k ≤ 128,

0 else,

(2.14)

where c is the entry of the 256 point DFT corresponding to a desired cutoff frequency.

β(k) is zero for all values greater than k = 128 because symmetry properties inherent

in the DFT of real valued signals make it unnecessary to measure these values.

After F has been calculated, the decision rule δce is used to classify an image

as unaltered or contrast enhanced, such that

δce =















image is not contrast enhanced E < ηce,

image is contrast enhanced E ≥ ηce,

(2.15)

Our observation that an unaltered image’s pixel value histogram is a strongly

low-pass signal suggests that our detector’s performance should improve as the fre-

quency cutoff of c is increased. To verify this, we conducted an experiment on one

29

set of data in which we obtained performance results for our contrast enhancement

detection technique using c values ranging from 32 to 112 and compared the results.

For this experiment, we used the green color layer from each of the 244 images

in the Uncompressed Colour Image Database as a set of unaltered grayscale im-

ages [38]. We created a set of contrast enhanced images by applying the power law

transformation

m(l) = 255

(

l

255

)γ

, (2.16)

with γ = 1.1 to the pixel values of each of the unaltered images. We then classified

each of these images as altered or unaltered using a series of decision thresholds

and with the parameter Np = 4. The probabilities of detection Pd and false alarm

Pfa were determined for each threshold by respectively calculating the percent of

contrast enhanced images correctly classified and the percent of unaltered images

incorrectly classified. The series of receiver operating characteristic (ROC) curves

displayed in Fig. 2.6 was generated using these results. As we hypothesized, our

detection algorithm’s performance improved as the value of c was increased, with

the best performance being achieved when using c = 112.

To perform a larger scale test of our contrast enhancement detection technique,

we compiled a database of 341 unaltered images consisting of many different subjects

and captured under a variety of light conditions. These images were taken with

several different cameras and range in size from 1500 × 1000 pixels to 2592 × 1944

pixels. The green color layer of each of these images was used to create a set of

unaltered grayscale images. We applied the power law transformation defined in

30

0 0.05 0.1 0.15
0.85

0.9

0.95

1

P
fa

P
d

c = 32
c = 64
c = 96
c = 112

Figure 2.6: Contrast enhancement detection ROC curves for images altered by a power law

transformation with (b) γ = 1.1 using several values of the cutoff parameter c.

(2.16) to each of these unaltered grayscale images using γ values ranging from 0.5

to 2.0 to create a set of contrast enhanced images. Additionally, we modified each

unaltered grayscale image using the nonstandard contrast enhancement mapping

displayed in Fig. 2.7(a). These images were combined with the unaltered images to

create a testing database of 4092 grayscale images.

To evaluate the performance of our contrast enhancement detection technique

on this testing set, each image was classified as altered or unaltered using a series

of decision thresholds. During classification, the parameters Np and c were set to

Np = 4 and c = 112. As before, the detection and false alarm probabilities were

calculated at each decision threshold and the series of ROC curves shown in Figs.

2.7(b) and (c) were generated. For each form of contrast enhancement tested, our

detection technique acheived a Pd of 0.99 at a Pfa of approximately 0.03 or less.

31

0 100 200
0

50

100

150

200

250

Input Pixel Value

O
ut

pu
t P

ix
el

 V
al

ue

(a)

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

P
fa

P
d

γ = 1.2
γ = 1.4
γ = 1.6
γ = 1.8
γ = 2.0

(b)

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

P
fa

P
d

γ = 0.9
γ = 0.8
γ = 0.7
γ = 0.6
γ = 0.5
Mapping
Displayed
In Fig. 7(a)

(c)

Figure 2.7: Contrast enhancement detection ROC curves for images altered by a power law

transformation with (b) 2.0 ≥ γ ≥ 1.2, and (c) 0.5 ≥ γ ≥ 0.9 as well as the mapping displayed in

Fig. (a).

32

2.3.2 Detection of Locally Applied Contrast Enhancement

Locally applied contrast enhancement can be defined as applying a contrast

mapping to a set of contiguous pixels J within an image. If the cardinality of J is

large enough that a histogram of the values of all pixels within J can be modeled

as interpolatably connected, then when contrast enhancement is performed on the

set J it will introduce its fingerprint into the histogram of J . In light of this,

the global contrast enhancement detection technique proposed in Section 2.3.1 can

be performed on a test set of pixels J ′ to achieve localized contrast enhancement

detection.

Ideally, the test set J ′ should be identical to the set J when performing

localized contrast enhancement detection. In reality, this is seldom the case because

if an image contains a set of contrast enhanced pixels, the members of this set are

not public knowledge. In some scenarios, the authenticity of a particular image

region is thrown in doubt and the test set can be manually selected to correspond

to encompass this region. If localized contrast enhancement is carefully applied,

however, it will not be obvious which image regions have been altered and the image

must be searched for contrast enhancement in its entirety. This can be performed

by segmenting an image into a set of blocks so that each block corresponds to a

unique test set, then performing contrast enhancement detection on each block.

The blockwise detection results can be combined to identify image regions which

show signs of contrast enhancement.

In some scenarios, locally applied contrast enhancement detection can be used

33

to identify other, more obviously malicious image manipulations such as cut-and-

paste forgery. Cut-and-paste image forgery consists of creating a composite image by

replacing a contiguous set of pixels in one image with a set of pixels O corresponding

to an object from a separate image. If the two images used to create the composite

image were captured under different lighting environments, an image forger may

need to perform contrast enhancement on O so that lighting conditions match across

the composite image. Failure to do this may result in a composite image which does

not appear realistic. Image forgeries created in this manner can be identified by using

localized contrast enhancement detection to locate O, the cut-and-pasted region.

When performing blockwise localized contrast enhancement detection, it is

important to ensure that the testing blocks are large enough to yield histograms

suitable for contrast enhancement detection. If the blocks are too small, they may

not contain enough pixels for the interpolatably connected histogram model to hold

valid. In order to determine which block sizes are sufficient to perform reliable

detection and examine the effectiveness of the local contrast enhancement detection

scheme, we performed the following experiment. Each of the 341 unaltered images

from the second test database described in Section 2.3.1 along with the power law

transformed images corresponding to γ = 0.5 through 0.9 were segmented into

square blocks. This process was performed for blocks of size 200 × 200, 100 × 100,

50 × 50, 25 × 25, and 20 × 20 pixels. Each block was then classified as contrast

enhanced or unaltered by our contrast enhancement detection scheme using a variety

of different thresholds. False alarm and detection probabilities were determined

at each threshold and for every choice of block size by calculating the percent of

34

incorrectly classified unaltered blocks and the percent of correctly classified contrast

enhanced blocks respectively. This information was used to generate a set of ROC

curves, shown in Fig. 2.8 for each value of γ which was tested.

The ROC curves shown in Fig. 2.8 indicate that local contrast enhancement

can be reliably detected using testing blocks sized at least 100 × 100 pixels. At

a Pfa of approximately 5%, a Pd of at least 95% was achieved using 200 × 200

pixel blocks and a Pd of at least 80% was achieved using 100× 100 pixel blocks for

each form of contrast enhancement tested. These results improved markedly when

the contrast enhancement applied was stronger than the relatively mild power law

transformation using γ = 0.9. In such cases, a Pd of roughly 98.5% and 96% was

achieved with a Pfa of aproximatley 5% for blocks sized 200×200 pixels and 100×100

pixels respectively. It should also be noted that testing blocks sized 25 × 25 pixels

and smaller appear to contain an insufficient number of pixels to perform reliable

contrast enhancement detection.

An example of a cut-and-paste image forgery in which the pasted region has

undergone contrast enhancement is shown in Fig. 2.9 along with the localized con-

trast enhancement detection results obtained from our proposed forensic technique.

Adobe Photoshop was used to create the forged image shown in 2.9(c) from the un-

altered images shown in Figs. 2.9(a) and 2.9(b). In order to detect the forgery, the

image was then segmented into 100× 100 pixel blocks, each of which was tested for

evidence of locally applied contrast enhancement. Figs. 2.9(d)-(f) show the results

of performing localized contrast enhancement detection on the red, green, and blue

color layers of the composite image. Blocks corresponding to contrast enhancement

35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC Curve for γ = 0.5

Blocksize = 200
Blocksize = 100
Blocksize = 50
Blocksize = 25
Blocksize = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC Curve for γ = 0.6

Blocksize = 200
Blocksize = 100
Blocksize = 50
Blocksize = 25
Blocksize = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC Curve for γ = 0.7

Blocksize = 200
Blocksize = 100
Blocksize = 50
Blocksize = 25
Blocksize = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC Curve for γ = 0.8

Blocksize = 200
Blocksize = 100
Blocksize = 50
Blocksize = 25
Blocksize = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC Curve for γ = 0.9

Blocksize = 200
Blocksize = 100
Blocksize = 50
Blocksize = 25
Blocksize = 20

Figure 2.8: ROC curves obtained using different testing block sizes for images altered by a power

law transformation with γ = 0.5 (top left), γ = 0.6 (top middle), γ = 0.7 (top right), γ = 0.8

(bottom left), and γ = 0.9 (bottom right).

36

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Cut and paste forgery detection example showing (a) the unaltered image from which

an object is cut, (b) the unaltered image into which the cut object is pasted, (c) the composite

image, (d) red layer blockwise detections, (e) green layer blockwise detections, and (f) blue layer

blockwise detections. Blocks detected as contrast enhanced are highlighted and boxed.

37

detections are highlighted and outlined in black. In this example, each of these

blocks contain pixels that correspond to the inauthentic object.

Figure 2.10 shows detection results when the block size is reduced to 50× 50

pixels. When detection was performed separately on each color layer of the forged

image, several false alarms occurred, as can be seen in Figures 2.10(a)-(c). These

false alarm blocks generally correspond to areas of the sky where the pixel values

are nearly constant, leading to a pixel value histogram that contains an impulsive

component outside of the pinch off region. The number of false alarms can be

reduced in color images such as this by classifying a block as contrast enhanced only

if a detection occurs at the corresponding block in each of the three color layers.

Figure 2.10(d) shows the results of applying this detection criteria to the single color

layer detections displayed in in Figures 2.10(a)-(c).

2.3.3 Histogram Equalization

In some scenarios, it may be desirable to identify the specific form contrast

enhancement used to modify an image. One simple and commonly used form of

contrast enhancement is histogram equalization. Histogram equalization effectively

increases the dynamic range of an image’s pixel values by subjecting them to a

mapping such that the distribution of output pixel values is approximately uniform

[14]. The mapping used to accomplish this is dependent upon the histogram of the

unaltered image and is is generated according to the equation

mhe(l) = round

(

255
l
∑

t=0

h(t)

N

)

, (2.17)

38

(a) (b)

(c) (d)

Figure 2.10: Cut and paste forgery detection results using 50× 50 pixel blocks showing (a) red

layer blockwise detections, (b) green layer blockwise detections, (c) blue layer blockwise detections,

and (d) blockwise detections that occur across all three color layers.

39

where N is the total number of pixels in the image. Because the histogram of an

unaltered image does not normally approximate a uniform distribution, the ‘uni-

formity’ of an equalized image’s histogram can be used as an identifying feature of

this mapping’s intrinsic fingerprint. We propose a test which measures the distance

between an image’s normalized histogram and the uniform distribution, then uses

this distance to determine if the image has undergone histogram equalization. This

test can be used after contrast enhancement has been detected or it can performed

independently of our generalized contrast enhancement detection technique.

Like any other contrast enhancement mapping, histogram equalization will

introduce zeros into an image’s pixel value histogram through the process discussed

in Section 2.2. Because of this, measures such as the Kullback-Leibler divergence

are ill equipped to determine the distance between the normalized histogram of an

equalized image and the uniform distribution. Similarly, other measures such as

the mean absolute difference or the mean squared difference between an image’s

normalized histogram and the uniform distribution will be biased away from small

values indicative of a uniform histogram by the zeros and accompanying impulsive

peaks present in an equalized image’s histogram. To mitigate this problem, we

propose measuring the uniformity of an image’s histogram in the frequency domain,

where histogram equalization’s identifying features can be separated from other

obfuscating effects.

The frequency domain representation of a constant function is an impulse cen-

tered at zero. Using this fact, we obtain a frequency domain measure of the distance

D of an image’s normalized histogram from the uniform distribution according to

40

the formula

D =
1

N

(

∑

k 6=0

|H(k)|α(k)

)

, (2.18)

In (2.18), α(k) is a weighting function used to deemphasize the high frequency

regions in H(k) where the energy introduced by histogram equalization’s intrinsic

fingerprint tends to accumulate. After calculating D for an image in question,

the decision rule δhe is then used to determine if histogram equalization has been

performed, where

δhe =















histogram equalization not present D > ηhe,

histogram equalization present D ≤ ηhe,

(2.19)

and ηhe is the decision threshold.

As discussed in Section 2.3.1, frequency domain detection methods suffer prob-

lems due to the constant offset present in H(k) in high and low end histogram sat-

urated images. Multiplying h(l) by a pinch off function will not remove the effects

of histogram saturation because for histogram equalized images, the location of the

impulsive component is often shifted by histogram equalization. Instead, we identify

impulsive components which are likely due to saturation effects and remove them

to obtain a modified histogram.

For low end histogram saturated images, we may safely assume that before

histogram equalization is applied to an image, the impulsive nature of its histogram

will cause the number of pixels in the lowest bin to be greater than 2N
255

. After

histogram equalization is performed, the pixel value l = 0 will be mapped to an

41

output value greater than or equal to 2 because

mhe(0) = round

(

255
l=0
∑

t=0

h(t)

N

)

≥ round

(

255

(

2

255

))

= 2. (2.20)

Letting l′ denote the lowest value of l such that h(l) > 0, images which may be

of this nature can be identified if l′ ≥ 2 and h(l′) ≥ 2N
255

. For these images, the

effects of the impulsive histogram component can be mitigated by forming a new

histogram h′(l) by retaining only the section of the histogram corresponding to

pixel values larger than the kth nonzero entry. More explicitly, h′(l) can be defined

as h′(l) = h(l′k + l + 1), where l′k is the kth nonempty bin in h(l). The parameter

h(l) in (2.18) can then be replaced by h′(l) to obtain a value of D unbiased by low

end histogram saturations effects.

In the case of high end histogram saturated images, we can similarly assume

that h(255) ≥ 2N
255

. When histogram equalization is performed on these images, the

input pixel value l = 254 is mapped to an output value of 253 or less because

mhe(254) = round

(

255
l=254
∑

t=0

h(t)

N

)

≤ round

(

255

(

1−
2

255

))

= 253. (2.21)

Using this information, high end saturated images that may have undergone his-

togram equalization can be identified by determining if l′′ ≤ 253 and h(255) ≥ 2N
255

,

where l′′ is the largest value of l such that l′′ < 255 and h(l′′) > 0. A new histogram

that does not contain the impulsive histogram component can now be formed by

according by letting h′′(l) = h(l) for l = 0, . . . , l′′k − 1, where l′′k is the kth nonempty

42

bin in h(l) counting backwards from l = 255. As before, h(l) in (2.18) can be re-

placed by h′′(l) to achieve a value of D unbiased by high end histogram saturations

effects.

To evaluate the performance of our histogram equalization classification method,

we performed histogram equalization on the 341 unaltered grayscale images from

our global contrast enhancement test database described in Section 2.3.1. We com-

bined the histogram equalized images with their unaltered counterparts to create

a histogram equalization testing database. Next we used our detection algorithm

to determine if each image in the database had undergone histogram equalization.

Detection was performed using two different weighting functions,

α1(k) =















exp(−r1k) if 0 ≤ k < 128

exp(−r1(256− k)) if 128 ≤ k ≤ 255

(2.22)

with r1 taking values between 0.1 and 0.5 and

α2(k) =















1 if k ≤ r2 or (256− k) ≤ r

0 else

(2.23)

with r2 values ranging from 4 to 16. The false alarm and detection probabilities

were then determined by calculating the percentage of incorrectly classified unal-

tered images and the percentage of correctly classified histogram equalized images

respectively.

A series of ROC curves showing the performance of our histogram equaliza-

tion detection scheme are displayed in Figure 2.11. Our detector achieved its best

performance using α1(k) as a weighting function with r1 = 0.5. Under these condi-

tions, a Pd of 99% was reached with a Pfa of approximately 0.5% as well as a Pd of

43

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

P
fa

P
d

r
1
 = 0.1

r
1
 = 0.2

r
1
 = 0.3

r
1
 = 0.4

r
1
 = 0.5

(a)

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

P
fa

P
d

r
2
 = 4

r
2
 = 8

r
2
 = 12

r
2
 = 16

(b)

Figure 2.11: Histogram equalization detection ROC curves obtained (a) using the weighting

function defined in (2.22) and (b) using the weighting function defined in (2.23).

100% with a Pfa of nearly 3%. Additionally, Figure 2.11 shows that our detection

scheme’s performance improved as the value of r1 increased when using α1(k), and

as the value of r2 decreased when using α2(k). Both of these trends correspond

to an increase in detector performance as the weighting function is chosen to place

more emphasis on low frequency regions of H(k) during detection. This reinforces

the notion that a weighting function is needed to deemphasize the middle and high

frequency regions of H(k) where general contrast enhancement artifacts can obscure

evidence of histogram equalization.

Additionally, we performed an experiment to verify that our histogram equal-

ization classification technique can differentiate between histogram equalization and

other forms of contrast enhancement. We created a new testing database consisting

of the 341 unaltered grayscale images as well as 1705 of the gamma corrected images

corresponding to γ = 0.5 to 0.9 from the experiment discussed in Section 2.3.1. We

then used our histogram equalization detection test to classify each of the images

44

0 0.02 0.04 0.06 0.08 0.1
0.9

0.92

0.94

0.96

0.98

1

P
fa

P
d

γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

Figure 2.12: ROC curves obtained when differentiating between histogram equalization and

other forms of contrast enhancement.

in the database as histogram equalized or not equalized. During classification, the

weighting function described in (2.22) was used with r2 = 4. The probabilities of

detection and false alarm were obtained by calculating the percentage of correctly

classified histogram equalized images and incorrectly classified gamma corrected im-

ages respectively. These probabilities were then used to generate the ROC curves

displayed in Fig. 2.12. A Pd of 100% was achieved at a Pfa of less than 1% for each

form of contrast enhancement tested.

2.4 Detecting Additive Noise in Previously JPEG Compressed Im-

ages

In this section, we present a technique designed to detect the global addition

of noise to an image that has previously undergone JPEG compression. Though

this may initially seem to be a fairly harmless operation, additive noise can be

used to disguise visual traces of image forgery or in an attempt to mask statistical

45

artifacts left behind by other image altering operations. Previous work has dealt

with the detection of noise added to specific regions of an image by searching for

fluctuations in localized estimates of an image’s signal to noise ratio (SNR) [33]. This

method fails, however, when noise has been globally added to an image because this

scenario will not result in localized SNR variations. Instead of relying upon SNR

measurements, our proposed technique operates by applying a predefined mapping

with a known fingerprint to a potentially altered image’s pixel values [43]. This

mapping is chosen such that an identifying feature of its fingerprint will be absent

if noise was added to the image. Accordingly, we are able to detect the presence

of additive noise if the application of the predefined mapping does not introduce a

fingerprint with this feature.

2.4.1 Scale and Round Mapping

To perform additive noise detection, we make use of a mapping which we refer

to as the scale and round mapping. We define the scale and round mapping as

v = round(cu) (2.24)

where u, v ∈ Z and c is a fixed scalar. To understand the fingerprint left by this

mapping, let us also define Uc(v) as the set of u values mapped to each distinct v

value by (2.24), where

Uc(v) = {u|v = round(cu)}. (2.25)

The cardinality of this set, denoted by |Uc(v)|, depends on the values of both c and

v. It can be proven that if c = p
q
such that p, q ∈ Z are relatively prime, |Uc(v)| is

46

periodic in v with period p. To see why this is so, consider first the following two

easily proven lemmas:

Lemma 1: Given a ∈ Z and b ∈ R

a = round(b) ⇔ a+ k = round(b+ k), ∀k ∈ Z. (2.26)

Lemma 2: Given u, v ∈ Z and c = p
q
such that p, q ∈ Z are relatively prime

v = round(cu) ⇔ v + p = round(c(u+ q)) (2.27)

Now using Lemma 2, we can state that for all u ∈ Uc(v), there exists some

ũ ∈ Uc(v + p), namely ũ = u + q, which implies that |Uc(v)| = |Uc(v + p)|. This

proves that the number of u values mapped to each v value is periodic with period

p. As a consequence, the intrinsic fingerprint of the scale and round operation will

contain a periodic component with period p.

2.4.2 Hypothesis Testing Scenario

We now shift our discussion to JPEG compression and its significance to the

detection of additive noise. When a color image undergoes JPEG compression, each

pixel in the image is first converted from the RGB color space to the YCbCr color

space using a linear transformation. Next, each color layer is divided into a series

of 8 × 8 pixel blocks and the discrete cosine transform of each block is computed.

The resulting set of DCT coefficients are quantized by dividing each coefficient by

its corresponding entry in a quantization matrix, then rounding the result to the

nearest integer. Finally, the quantized DCT coefficients are reordered into a single

bitstream which is losslessly compressed.

47

The image is decompressed by losslessly decoding the bitstream of quantized

DCT coefficients, then reshaping it back into the series of blocks. The DCT coef-

ficients are dequantized by multiplying each quantized DCT coefficient by its cor-

responding entry in the quantization matrix used during compression. Next, the

inverse DCT (IDCT) of each block is computed, resulting in a set of pixel values

in the YCbCr colorspace. Because the dequantized DCT coefficients are integer

multiples of their respective quantization table entries and because the IDCT is a

fixed linear transformation, the pixel values in the YCbCr color space will lie in a

countable subset of R3. As a result, if a monotonically increasing mapping is ap-

plied to any color layer in the YCbCr color space, that mapping’s fingerprint will

be introduced into the histogram of the color layer’s values.

In the final stage of JPEG decompression, the pixels are transformed from the

YCbCr to the RGB color space, then projected back into P3. Letting y denote a

pixel in the RGB color space, x denote the same pixel in the YCbCr color space,

and T be the linear transformation that maps a pixel from the YCbCr to the RGB

color space, this process can be described mathematically by the equation

y = truncate(round(Tx)), (2.28)

where the operation truncate(·) maps values of its argument less than 0 to 0 and

values greater than 255 to 255. By defining Q(Tx) = truncate(round(Tx)) − Tx,

we may now formulate the detection of additive noise as the following hypothesis

48

testing problem:

H0 : y = Tx+Q(Tx)

H1 : y = Tx+Q(Tx) + n.

(2.29)

It should be noted that traditional Bayesian techniques cannot be used to dif-

ferentiate between these two hypotheses because the distribution of x is unknown.

Instead, we differentiate between these two hypotheses by observing that the finger-

print left by the mapping

z = round(cT−1y), (2.30)

where the constant c = p
q
is such that p, q ∈ Z are relatively prime, differs under

each hypothesis. When this mapping is applied to each pixel within an image, the

hypothesis testing problem outlined in (2.29) can be rewritten as

H0 : z = round(cx+ e)

H1 : z = round(cx+ e+ cT−1n),

(2.31)

where e = cT−1Q(Tx).

Under hypothesis H0, the i
th entry of z can be expressed as according to the

formula

zi = round(cxi + ei)

= round(cxi) + round(ei) + di,

(2.32)

where di is an independent random variable which accounts for the error induced

by summing the individually rounded terms cxi and ei. Because the variances of

the terms round(ei) and di are typically small, the term round(cxi) dominates the

behavior of the PMF of zi. Since the term round(cxi) is of the same form as (2.24),

49

the number of distinct xi values mapped to each zi value will occur in a fixed

periodic pattern. This will result in the presence of a discernible periodic pattern

with period p in the envelope of the histogram of zi values. This pattern corresponds

to the intrinsic fingerprint of the scale and round mapping. This pattern, which

corresponds to the intrinsic fingerprint of the scale and round mapping, can be

clearly seen in Fig. 2.13.

Under hypothesis H1, we find that the histogram of zi values exhibits different

behavior. Defining the matrix W as the inverse of T such that

T−1 = W =

















W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

















, (2.33)

the ith entry of z can be expressed as

zi = round
(

cxi +
3
∑

j=1

cWi,jnj + ei

)

= round(cxi) +
3
∑

j=1

round (cWi,jnj) + round(ei) + di,

(2.34)

where di is an independent random variable which accounts for the error induced by

moving the summation of terms outside the round operation. Under this hypothesis,

the PMF of zi is equivalent to the convolution of each of these terms. Under this

hypothesis, however, three additional terms containing the scale and round mapping

appear, each with their own scaling constant cWi,j . If these scaling constants along

with the original scaling constant c are such that the fingerprints introduced into

each individual term share no common period, then the convolution of the PMFs of

each term will effectively smooth out the PMF of zi. As a result, no periodic pattern

50

will be introduced into the histogram of zi by the mapping defined in (2.28). This

effect can be observed in the example shown in Fig. 2.13.

2.4.3 Additive Noise Detection in Images

Using this information, we are able to rephrase the detection of the addition of

noise to a previously JPEG compressed image as the detection of the periodic finger-

print of (2.28) within the envelope of hzi(l), the normalized histogram of zi. Because

of its periodic nature, the detection of this fingerprint is particularly well suited for

the frequency domain, where it will produce a peak centered at the frequency bin

corresponding to its fundamental frequency or an integer multiple thereof. The bot-

tom two plots of Fig. 2.13 show the presence or absence of this peak under each

hypothesis. Furthermore, since the period of the fingerprint is dictated by our choice

of the scaling constant, we are able to choose the frequency location of this peak.

To facilitate detection, we obtain a frequency domain representation Gzi(k)

of the histogram hzi(l) which is free from any possible high or low end histogram

saturation effects. We accomplish this by defining Gzi(k) as the DFT of gzi(l), which

we calculate using the equation

gzi(l) = hzi(l)p(l) (2.35)

where p(l) is the pinch off function denoted in (2.12). Next, we test for the presence

of the periodic fingerprint by measuring the strength of the peak that it introduces

into Gzi(k). This measurement is obtained using the equation

S = min

{

|Gzi(k
∗)|

1
|B1|

∑

j∈B1
|Gzi(j)|

,
|Gzi(k

∗)|
1

|B2|

∑

j∈B2
|Gzi(j)|

}

(2.36)

51

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

z
1

h(
z 1)

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

z
1

h(
z 1)

−pi −pi/2 0 pi/2 pi
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω

G
z 1(ω

)

−pi −pi/2 0 pi/2 pi
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω

G
z 1(ω

)

Figure 2.13: Example showing an unaltered image (top left), its normalized z1 histogram (middle

left), and the magnitude of the DFT of its z1 histogram (bottom left), as well as an altered version

of the image to which unit variance Gaussian noise has been added (top right), its normalized z1

histogram (middle right), and the magnitude of the DFT of its z1 histogram (bottom right). In

both cases, the scaling parameter was chosen to be c = 3

4
.

52

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

Figure 2.14: Additive noise detection ROC curve for images which were JPEG compressed using

default camera settings then altered by adding unit variance Gaussian additive noise.

where k∗ is the frequency location of the expected peak and B1 and B2 are sets of

contiguous indices of Gzi lying above and below k∗ respectively. Finally, we use a

decision rule δn corresponding to the threshold test

δn =















noise has not been added if S < ηn

noise has been added if S ≥ ηn.

(2.37)

to determine the presence or absence of additive noise within the image.

When using this technique, the sets B1 and B2 should be chosen such that

they do not include indices directly adjacent to k∗. This is because DFT windowing

effects may result in artificially larger values of |Gzi(k)| around the peak if it is

present. Additionally, the interpolatable connectivity restriction placed upon the

histogram of pixel values in our image model implies that Gzi(k) will be strongly

low-pass in nature. This property suggests that to achieve better differentiability, c

should be chosen such that it introduces a high frequency signal into hzi(l).

To evaluate the performance of our additive noise detection technique, we

compiled a set of 277 unaltered images taken by four different digital cameras from

53

unique manufacturers. These images capture a variety of different scenes and were

saved as JPEG compressed images using each camera’s default settings. A set of

altered images was created by decompressing each image and independently adding

unit variance Gaussian noise to each pixel value. These altered images were then

saved as bitmaps, along with decompressed versions of the original images, creating

a testing database of 554 images. Next we used our additive noise detection test to

determine if noise had been added to each image in the database. When creating

the histogram of zi values, we chose i = 1 which corresponds to using the luminance

or “Y” component of each pixel. The parameter c was chosen to take the value

c = 7
11

leading to an expected peak location of k∗ = 71. The sets of B1 and B2 were

chosen to be B1 = {61, . . . , 68} and B2 = {74, . . . , 81}.

Detection and false alarm probabilities were determined at a series of decision

thresholds by calculating the percentages of correctly classified images to which

noise had been added and incorrectly classified unaltered images respectively. Using

this data, an ROC curve showing the performance of our additive noise detection

algorithm is displayed in Fig. 2.14. A Pd of approximately 80% was achieved at

a false alarm rate less than 0.4%. When the Pfa was held less than 6.5%, the Pd

increased to nearly 99%. These results indicate that our detection scheme is able

to reliably detect additive noise in images previously JPEG compressed using a

camera’s default settings.

Additionally, we evaluated our additive noise detection technique’s ability to

operate on images previously JPEG compressed at different quality factors. To do

this, we JPEG compressed each of the 244 images in the Uncompressed Colour

54

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

Q = 90
Q = 70
Q = 50
Q = 30

Figure 2.15: Additive noise detection ROC curve for images which were JPEG compressed at

several different quality factors then altered by adding unit variance Gaussian additive noise.

Image Database at the quality factors Q = 90, 70, 50, and 30 [38]. As before, we

created a set of altered images by adding unit variance Gaussian noise to each image,

then saved each image as a bitmap. We then tested each image for the presence

of additive noise with our proposed forensic technique using a variety of detection

thresholds. We conducted this experiment using the same experimental parameters

as our previous test. For each threshold, the probabilities of detection and false

alarm were calculated then used to construct the series of ROC curves displayed in

Fig. 2.15. Results comparable to our previous experiment were achieved for images

previously compressed using quality factors of 50 or greater. For these quality

factors, a Pd of 99% was acheived at a Pfa of 3.7% or less. At lower quality factors,

however, noise detection appears to become more difficult.

2.5 Summary

In this chapter, we proposed a set of digital image forensic techniques capable

of detecting global and local contrast enhancement, identifying the use of histogram

55

equalization, and detection the global addition of noise to a previously JPEG com-

pressed image. In each of these techniques, detection depends upon the presence or

absence of an intrinsic fingerprint introduced into an image’s histogram by a pixel

value mapping.

We developed a model of an unaltered image’s pixel value histogram and

provided justification for this model. We defined the intrinsic fingerprint which

a mapping leaves in the histogram of of an image’s pixel values or other discrete

valued data. By observing that the intrinsic fingerprints of contrast enhancement

operations add energy to the high frequency components of an image’s pixel value

histogram, we developed a global contrast enhancement detection technique. We

extended this technique into a method for detecting locally applied contrast en-

hancement and demonstrated its usefulness for detecting cut and paste type forg-

eries. Characteristic features of histogram equalization’s intrinsic fingerprint were

identified and used to propose a scheme for identifying the use of this operation.

Additionally, we proposed a technique which detects the global addition of noise to

a previously JPEG compressed image by searching for the intrinsic fingerprint of a

specific pixel value mapping applied to the image in question.

Through detailed simulations, we tested the effectiveness of each of the pro-

posed forensic techniques. Our simulation results show that aside from exceptional

cases, each of the proposed techniques achieved a Pd of 99% with a Pfa of 7% or less.

These results indicate that all of the proposed forensic techniques are very useful

tools for identifying image manipulations and forgeries.

56

Chapter 3

Forensic Estimation and Reconstruction of a Contrast Enhancement

Mapping

In the previous chapter, we identified the intrinsic fingerprints of contrast en-

hancement operations and used them to identify contrast enhanced images [40]. In

this chapter, we present an iterative method to jointly estimate the contrast en-

hancement mapping used to modify an image as well as the image’s pixel value

histogram before contrast enhancement [45]. Our method requires no side informa-

tion and makes no assumptions on the form of the contrast enhancement mapping

aside from monotonicity. This algorithm is more general than previous work such

as [8], which assumes that the contrast enhancement mapping can be described by

a parametric equation which is known to the forensic examiner.

3.1 System Model

For any digital image, a normalized histogram h of its pixel values can be

computed such that each normalized histogram value h(x) ∈ [0, 1] represents the

relative frequency of a pixel value x. Because most images vary in their origin and

content, their histogram statistics will vary as well. For images created by using a

digital camera to capture a real world scene, however, we have observed that their

pixel value histograms typically conform to a smooth envelope, as can be seen in

57

0 50 100 150 200 250
0

2

4

6

8
x 10

−3

Pixel Value

N
or

m
al

iz
ed

 H
is

to
gr

am
 V

al
ue

Figure 3.1: Left: Typical image captured by a digital camera. Right: Pixel value histogram of

the image shown above.

Fig. 3.1. This phenomenon is caused by many factors, including complex lighting

and shading environments, electronic noise present in a digital camera’s CCD sensor,

and the observation that most real world scenes consist of a continuum of colors [40].

Because no notion of smoothness exists for discrete functions such as his-

tograms, we instead describe the pixel value histograms of these image as interpo-

latably connected. We define an interpolatably connected histogram as one in which

an approximation of the histogram value at a particular pixel value x′ can be ob-

tained by interpolating h(x′) given all other histogram values using a smoothing

spline. We denote this approximated value as ĥ(x′). Fig. 3.2 shows an approxima-

tion of the pixel value histogram displayed in Fig. 3.1, where each approximated

value has been calculated in the manner described above. Though the histograms

of computer generated images may not have this property, it is unlikely that such

images would undergo contrast enhancement since their contrast properties can be

controlled during the image’s creation. As a result, we only consider images captured

using a digital camera in this work.

58

0 50 100 150 200 250
0

2

4

6

8
x 10

−3

Pixel Value

A
pp

ro
xi

m
at

ed
 H

is
to

gr
am

 V
al

ue

Figure 3.2: Approximation ĥ of the histogram shown in Fig. 3.1.

We model the relationship between a histogram value and its smoothing spline

approximation using the formula

h(x) = (1 + ǫ)ĥ(x), (3.1)

where the term ǫ is a random variable which takes into account approximation error.

We choose a multiplicative error model instead of an additive one to account for

the fact that large differences between h and ĥ are more probable for large values

of ĥ. After observing the distribution of ǫ values, which can be calculated from

a histogram and its approximation using the formula ǫ = h(x)−ĥ(x)

ĥ(x)
, we model the

distribution of the multiplicative error term as

P (ǫ = q) = λ
2−e−λ e

−λ|q|
1(q ≥ −1) (3.2)

where 1(·) denotes the indicator function. The validity of this model distribution

can be seen in Fig. 3.3, which shows the distribution of ǫ values calculated from the

histogram and histogram approximation shown in Figs. 3.1 and 3.2 respectively, as

well as the fitted model distribution.

59

Figure 3.3: Distribution of ǫ values calculated from the histogram h shown in Fig. 3.1 and its

approximation ĥ shown in Fig. 3.2

3.2 Effects of Contrast Enhancement

When a contrast enhancement operation is applied to a digital image, its pixel

values undergo a nonlinear mapping. Letting P = {0, . . . , 255} denote the set of

allowable pixel values, each pixel value x ∈ P in the unaltered image is mapped to

a pixel value y ∈ P in the contrast enhanced image using the mapping function m,

such that

y = m(x). (3.3)

To exclude simple reorderings of the pixel values, we assume thatm is monotonically

nondecreasing.

Because contrast enhancement alters the pixel values of an image, its pixel

value histogram will be affected as well. The histogram hY (y) of pixel values in

the contrast enhanced image can be written in terms of the unaltered image’s pixel

value histogram hX(x) using the equation

hY (y) =
∑

x∈P

hX(x)1(m(x) = y). (3.4)

60

0 50 100 150 200 250
0

0.005

0.01

0.015

Pixel Value

N
or

m
al

iz
ed

 H
is

to
gr

am
 V

al
ue

Figure 3.4: Pixel value histogram of the image shown in Fig. 3.1 after contrast enhancement

has been applied.

This equation indicates that every value of hY must equal either a single value of hX ,

a sum of distinct hX values, or zero. As a consequence, impulsive peaks will occur

in hY at y values to which multiple x values were mapped. Similarly, gaps will occur

in hY at y values to which no x values were mapped. These peaks and gaps, which

can be clearly seen in Figure 3.4, serve as the contrast enhancement fingerprints

discussed in Chapter 2 that can be used to identify contrast enhancement [40].

3.3 Estimation of the Contrast Enhancement Mapping and the Un-

altered Histogram

Once an image has been identified as contrast enhanced, an estimate of the

contrast enhancement mapping used to modify the image as well as an estimate

of the unaltered image’s pixel value histogram can be jointly obtained through an

iterative process. In this section, we describe this iterative process in detail. To

aid the reader, we have included Fig. 3.5 which shows an example of our proposed

61

algorithm over multiple iterations. The histogram entries in this example have

been uniquely color coded so that they can be tracked across each iteration. When

multiple histogram entries share a common color in iterations 1 and 2, it is because

the estimate of the contrast enhancement mapping at that iteration indicates that

their corresponding pixel values are mapped to the same contrast enhanced pixel

value.

We define g(k)(x) as the kth estimate of the unaltered image’s histogram. This

estimate is initialized by setting g(0) equal to contrast enhanced image’s histogram

hY . Each iteration begins by searching for the entry in g(k)(x) most likely to corre-

spond to the sum of multiple entries of the unaltered image’s histogram hX . This

is equivalent to finding the pixel value x
(k)
∗ present in the contrast enhanced image

that is most likely to be one to which multiple unaltered pixel values were mapped.

To do this, we establish a test set of pixel values that could potentially be x
(k)
∗ .

Because pixel values whose estimated histogram value are zero cannot be x
(k)
∗ , nor

can any pixel that maps to a past value of x∗, we define the test set at the kth

iteration as T (k) = {x|x ∈ P, g(k)(x) 6= 0, x /∈ X(k)} where X(k) is the set of pixel

values that map to previous values of x∗. The set X(k) is initialized as the null set

and an update rule for X(k) is given later in (3.11).

Since finding x
(k)
∗ is equivalent to finding the entry of g(k) least likely to corre-

spond to a single entry in the unaltered histogram hX , we may rephrase our problem

as

x(k)∗ = arg min
x∈T (k)

P (hX(x) = g(k)(x)). (3.5)

62

If we temporarily assume that the histogram approximation ĥ is known, we may use

(3.1) and (3.2) to write

P
(

hX(x) = g(k)(x)
)

= P
(

ǫ = g(k)(x)−ĥ(x)

ĥ(x)

)

= λ
2−e−λ e

−λ

∣

∣

∣

∣

∣

g(k)(x)−ĥ(x)

ĥ(x)

∣

∣

∣

∣

∣

1

(

g(k)(x)−ĥ(x)

ĥ(x)
≥ −1

)

, (3.6)

therefore x
(k)
∗ will be the value of x ∈ T (k) which maximizes

∣

∣

∣

g(k)(x)−ĥ(x)

ĥ(x)

∣

∣

∣
such that

g(k)(x)−ĥ(x)

ĥ(x)
≥ −1. Since it is unlikely that ĥ is known, we approximate it with ĝ(k),

where ĝ(k)(x) is determined by using a smoothing spline to interpolate the value of

g(k)(x) given {g(k)(x′)|x′ ∈ T, x′ 6= x}. Using this approximation, the value of x
(k)
∗

is determined according to the formula

x(k)∗ ≈ arg max
x∈T (k)

∣

∣

∣

g(k)(x)−ĝ(k)(x)

ĝ(k)(x)

∣

∣

∣
1

(

g(k)(x)−ĝ(k)(x)

ĝ(k)(x)
≥ −1

)

. (3.7)

The function to be maximized in (3.7) is nonconcave, therefore x
(k)
∗ must be found

using an exhaustive search. Fortunately, this search is not prohibitively time con-

suming due to the relatively small number of elements in T (k).

Once x
(k)
∗ has been determined, the estimate of the contrast enhancement map-

ping, denoted by m(k), can be updated. Before the first iteration, m(0) is initialized

such that m(0)(x) = x. To update m(k) we first estimate r, the number of unaltered

pixel values mapped to x
(k)
∗ . By assuming that the histogram value of each pixel

value mapped to x
(k)
∗ is ĝ(k)(x

(k)
∗), we can obtain r using the equation

r = round

(

g(k)(x
(k)
∗)

ĝ(k)(x
(k)
∗)

)

. (3.8)

Because the contrast enhancement mapping is monotonically nondecreasing, it must

preserve the pixel value ordering. This implies that the set of pixel values mapped

63

0 2 4 6
0

2

4

6

x

m
(0

) (x
)

0 1 2 3 4 5 6 7
0

1

2

3

4

g(0
) (x

)

x

0 2 4 6
0

2

4

6

x

m
(1

) (x
)

0 1 2 3 4 5 6 7
0

1

2

3

4

x

g(1
) (x

)

0 2 4 6
0

2

4

6

x

m
(2

) (x
)

0 1 2 3 4 5 6 7
0

1

2

3

4

g(2
) (x

)

x

x
*
(0)

x
*
(1)

Figure 3.5: Example of our estimation algorithm running across several iterations. Histogram

entries are initially uniquely color coded so that they can be tracked across each iteration. His-

togram entries share a common color in iterations 1 and 2 when the current contrast enhancement

estimate indicates that their corresponding pixel values will be mapped to the same output pixel

value. The histogram values of these entries are estimated in accordance with our algorithm.

to x
(k)
∗ must lie either immediately above or below x

(k)
∗ . Furthermore, since a

zero is introduced somewhere into the pixel value histogram by each pixel value

mapped to x
(k)
∗ , we determine which pixel values were mapped to x

(k)
∗ by counting

the number of zeros in g(k) both above and below x
(k)
∗ . We define these counts as

n+ =
∑

x>x
(k)
∗

1(g(k)(x) = 0) and n− =
∑

x<x
(k)
∗

1(g(k)(x) = 0).

If n+ ≥ n−, we assume that the r pixel values immediately greater than x
(k)
∗

are mapped to x
(k)
∗ and that all pixel values greater than x

(k)
∗ + r are shifted by the

64

mapping accordingly. Precisely, we update the mapping in this case according to

the equation

m(k+1)(x) =















































m(k)(x) x < x
(k)
∗

x
(k)
∗ x

(k)
∗ ≤ x < x

(k)
∗ + r

m(k)
(

x+
∑x+

l=x 1(g
(k)(l) = 0)

)

x
(k)
∗ + r ≤ x ≤ x+

m(k)(x) x > x+

(3.9)

where x+ is the location of the rth zero in g(k) counting up from x
(k)
∗ . Similarly, if

n+ < n− we assume that the r pixel values immediately less than x
(k)
∗ are mapped

to x
(k)
∗ and that the pixel values less than x

(k)
∗ − r are shifted accordingly such that

m(k+1)(x) =














































m(k)(x) x < x−

m(k)
(

x−
∑x

l=x−

1(g(k)(l) = 0)
)

x− ≤ x ≤ x
(k)
∗ − r

x
(k)
∗ x

(k)
∗ − r < x < x

(k)
∗

m(k)(x) x > x
(k)
∗

(3.10)

where x− is the location of the rth zero in g(k) counting down from x
(k)
∗ .

After the estimate of the contrast enhancement mapping is updated, the set

X is updated using the equation

X(k+1) = {x|m(k+1)(x) ∈ (X(k) ∪ x(k)∗)}. (3.11)

For all pixel values not in the set X(k+1), the estimate of the unaltered pixel value

histogram is updated by

g(k+1)(x) =
∑

l

g(0)(l)1(m(k+1)(l) = x). (3.12)

65

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

Pixel Value

H
is

to
gr

am
 V

al
ue

Estimated
Histogram
Unaltered
Histogram

0 100 200
0

50

100

150

200

250

Input Pixel Value

O
up

ut
 P

ix
el

 V
al

ue

True
Mapping
Estimated
Mapping

Figure 3.6: Left: Unaltered pixel value histogram and its estimate. Right: Contrast enhancement

mapping and its estimate.

The value of g(k+1) is then interpolated at pixel values in the set X(k+1), and appro-

priately normalized such that

g(k+1)(x) = ĝ(k+1)(x)
g(0)(m(k+1)(x))

∑

t|m(k+1)(t)=m(k+1)(x) ĝ
(k+1)(t)

. (3.13)

The iteration is terminated when either the maximum value of
∣

∣

∣

ĝ(k)(x)−g(k)(x)

ĝ(k)(x)

∣

∣

∣
falls

below a preset threshold or when no zeros remain in g(k).

3.4 Results

To test the performance of our proposed algorithm, we applied it to the con-

trast enhanced pixel value histogram shown in Fig. 3.4. The resulting estimate of

the unaltered pixel value histogram is shown in Fig. 3.6 along with the true un-

altered pixel value histogram. When we compare the estimated histogram to the

true one, we find very few differences between the two. Estimation errors occur

primarily in regions where the unaltered histogram’s first difference changes values

abruptly. The rightmost image in Fig. 3.6 shows the estimate of the contrast en-

66

hancement mapping used to modify the image. This is plotted along with the true

contrast enhancement mapping y = 255(x
255

)γ, which corresponds to the gamma

correction with γ = 0.8. Our algorithm was able to perfectly estimate this contrast

enhancement mapping.

To demonstrate our algorithm’s ability to operate on an image modified by

a nonstandard form of contrast enhancement, we used it to obtain estimates of

the unaltered histogram and contrast enhancement mapping from the pixel value

histogram displayed at the bottom right of Fig. 3.7. The contrast enhancement

mapping used to modify the image is shown at the right of Fig. 3.7 along with

our estimate of the mapping. The top left image in Fig. 3.7 shows the pixel value

histogram of the image before contrast enhancement as well as our estimate of

the unaltered histogram. These results indicate that our algorithm is capable of

achieving accurate mapping and histogram estimates from images modified by a

large class of contrast enhancement operations not considered in [8].

3.5 Summary

In this chapter, we proposed an iterative algorithm to jointly estimate an im-

age’s unaltered pixel value histogram as well as the contrast enhancement mapping

used to modify the image given only a contrast enhanced version of the image. We

used a probabilistic model of an image’s histogram to identify the histogram en-

tries most likely to correspond to contrast enhancement artifacts. We then used

this model along with knowledge of how contrast enhancement modifies an image’s

67

0 50 100 150 200 250
0

2

4

6

8

x 10
−3

Pixel Value

H
is

to
gr

am
 V

al
ue

Estimated
Histogram
Unaltered
Histogram

0 100 200
0

50

100

150

200

250

Input Pixel Value
O

ut
pu

t P
ix

el
 V

al
ue

True
Mapping
Estimated
Mapping

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

Pixel Value

H
is

to
gr

am
 V

al
ue

Figure 3.7: Top Left: Unaltered pixel value histogram and its estimate. Top Right: Contrast

enhancement mapping and its estimate. Bottom: Pixel value histogram after contrast enhance-

ment.

68

histogram to obtain our unaltered histogram and contrast enhancement mapping

estimates. Simulation results indicate that our algorithm is capable of providing ac-

curate estimates even when nonstandard forms of contrast enhancement are applied

to an image.

69

Chapter 4

Anti-Forensics of Digital Image Compression

Due to the widespread availability of digital cameras and the rise of the Inter-

net as a means of communication, digital images have become an important method

of conveying visual information. Unfortunately, the ease with which digital images

can be manipulated by photo-editing software has created an environment where the

authenticity of digital images is often in doubt. To prevent digital image forgeries

from being passed off as unaltered originals, researchers have developed a variety

of digital image forensic techniques. These techniques are designed to determine

an image’s originating camera [5], trace its processing history [28], and determine

its authenticity [1,52], all without relying on an extrinsically inserted watermark or

access to the original image. Instead, these techniques make use of intrinsic fin-

gerprints introduced into an image by editing operations or the image formation

process itself [44].

Image compression fingerprints are of particular forensic significance due the

fact that most digital images are subjected to compression either by the camera

used to capture them, during image storage, or for the purposes of digital transmis-

sion over the Internet. Techniques have been developed to determine if an image

saved in a lossless format has ever undergone JPEG compression [7, 26] or other

types of image compression including wavelet-based techniques [26]. If evidence of

70

JPEG compression is detected, the quantization table used during compression can

be estimated [7]. Because most digital cameras and image editing software use pro-

prietary JPEG quantization tables when compressing an image, an image’s origin

can be identified by matching the quantization tables used to compress the image

with those in a database of quantization table and camera or software pairings [9].

If the quantization tables are matched with those used by image editing software,

the authenticity of the image can be called into question. Recompressing an image

which has previously been JPEG compressed, also known as double JPEG com-

pression, can be detected [32,33] and the quantization table used during the initial

application of JPEG compression can be estimated. Localized evidence of double

JPEG compression can be used to identify image forgeries [16] as well as localized

mismatches in an image’s JPEG block artifact grid [57].

Though many existing forensic techniques are capable of detecting a vari-

ety of standard image manipulations, they do not account for the possibility that

anti-forensic operations may be designed and used to hide image manipulation fin-

gerprints. This is particularly important because it calls into question the validity

of forensic results indicating the absence of image tampering. It may be possible

for an image forger familiar with signal processing to secretly develop anti-forensic

operations and use them to create undetectable image forgeries. As a result, several

existing forensic techniques may contain unknown vulnerabilities.

In order to combat the creation and spread of undetectable image forgeries, it

is necessary for image forensics researchers themselves to develop and study anti-

forensic operations. By doing so, researchers can be made aware of which forensic

71

techniques are capable of being deceived, thus preventing altered images from being

represented as authentic and allowing forensic examiners to establish a degree of

confidence in their findings. Furthermore, it is likely that many anti-forensic opera-

tions will leave behind detectable fingerprints of their own. If these fingerprints can

be discovered, forensic techniques can be designed to detect the use of anti-forensic

operations. It is also possible that anti-forensic operations may be used to provide

intellectual property protection. This would be done by integrating them into digi-

tal image and video cameras to prevent the reverse engineering of proprietary signal

processing components through digital forensic means.

At present, very little anti-forensics research has been published. To the best

of our knowledge, the only prior work studying digital image anti-forensics are tech-

niques to remove traces of image resizing and rotation [21], to forge the photo-

response non-uniformity noise fingerprint left in an image by a digital camera’s

electronic sensor [12], and to artificially synthesize color filter array artifacts [22].

In this chapter, we present a set of anti-forensic operations capable of removing

compression fingerprints from digital images [48]. Since most modern lossy image

compression techniques involve transform coding, we propose a framework for the

removal of quantization fingerprints from a compressed image’s transform coeffi-

cients by adding anti-forensic dither to them. We use this framework to develop

anti-forensic operations to remove quantization artifacts from the DCT coefficients

of JPEG compressed images and from the wavelet coefficients of wavelet based

schemes such as JPEG 2000, SPIHT, and EZW [46, 49]. Additionally, we propose

an anti-forensic operation to remove statistical traces of blocking artifacts from

72

JPEG compressed images. We then experimentally demonstrate that our proposed

anti-forensic operations can be used to fool a variety of compression fingerprint

based forensic algorithms designed to detect single and double JPEG compression,

wavelet-based image compression, determine an image’s origin, and detect cut-and-

paste image forgeries [50].

The organization of this chapter is as follows. In Section 4.1, we discuss the

quantization fingerprints left by image transform coders and propose a generalized

framework for their removal. We adapt this framework for use with JPEG compres-

sion in Section 4.2 and wavelet-based compression in Section 4.3. In Section 4.4, we

propose an anti-forensic technique capable of removing statistical traces of blocking

artifacts. We present the results of several experiments designed to evaluate the per-

formance of each of our proposed anti-forensic techniques in Section 4.5. In Section

4.6 we discuss how these techniques can be used to render certain forms of im-

age tampering such as double JPEG compression, cut-and-paste image forgery, and

image origin falsification undetectable through compression history based forensic

means. Finally, we summarize this chapter in Section 4.7.

4.1 Anti-Forensic Framework

Virtually all modern lossy image compression techniques are subband coders,

which are themselves a subset of transform coders. Transform coders operate by

applying a mathematical transform to a signal, then compressing the transform

coefficients. Subband coders are transform coders that decompose the signal into

73

different frequency bands or subbands of transform coefficients. Typical lossy image

compression techniques operate by applying a two-dimensional invertible transform,

such as the discrete cosine transform (DCT) or discrete wavelet transform (DWT),

to an image as a whole, or to each set of pixels within an image that has been

segmented into a series of disjoint sets. As a result, the image or set of pixels

is mapped into multiple subbands of transform coefficients, where each transform

coefficient is denoted X ∈ R.

Once obtained, each transform coefficient must be mapped to a binary value

both for storage and to achieve lossy compression. This is achieved through the

process of quantization, in which the binary representation X̂ of the transform

coefficient X is assigned the value x̂ according to the equation

X̂ = x̂ if bk ≤ X < bk+1, (4.1)

where bk and bk+1 denote the boundaries of the quantization interval over which

X maps to the value x̂. Because some subbands of transform coefficients are less

perceptually important than others, thus can accomodate greater loss during the

quantization process, the set of quantization interval boundaries is chosen differently

for each subband. After each transform coefficient is given a binary representation,

the binary values are reordered into a single bit stream which is often subjected to

lossless compression.

When the image is decompressed, the binary bit stream is first rearranged

into its original two dimensional form. Each decompressed transform coefficient Y

is assigned a value through dequantization. During this process each binary value

74

is mapped to a quantized transform coefficient value q belonging to the discrete

set Q = {. . . , q−1, q0, q1, . . .}. Each dequantized transform coefficient value can

be directly related to its corresponding original transform coefficient value by the

equation

Y = qk if bk ≤ X < bk+1. (4.2)

After dequantization, the inverse transform is performed on the set of transform

coefficients and the resulting values are projected back into the set of allowable

pixel values P = {0, . . . , 255}. If the image was segmented, this process is repeated

for each segment and the decompressed segments are joined together to create the

decompressed image; otherwise, this process reconstructs the decompressed image

as a whole.

By performing image compression in this manner, a distinct fingerprint is in-

troduced into the transform coefficients of an image. When examining an unaltered

image’s transform coefficient values within a particular subband, they will likely be

distributed according to a smooth, continuous distribution. This is not the case for

images which have undergone image compression, since the processes of quantiza-

tion and dequantization force the transform coefficients of a compressed image to

take values within the discrete set Q. In practice, the act of projecting the decom-

pressed pixel values perturbs the transform coefficient values, though the transform

coefficients of a previously compressed image still cluster tightly around elements

of Q. These fingerprints, known as transform coefficient quantization artifacts, are

used by the majority of compression artifact based forensic techniques to identify

75

−200 −100 0 100 200
0

500

1000

1500

2000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−200 −100 0 100 200
0

2000

4000

6000

8000

10000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.1: Left: Histogram of DCT coefficients from an uncompressed image. Right: Histogram

of DCT coefficients from the same image after JPEG compression

single or double compression, determine an image’s origin, or identify image forg-

eries. They can be clearly seen in Figure 4.1, which shows the histogram of one

subband of DCT coefficients from an image before and after JPEG compression.

If the image was divided into segments during compression, another compres-

sion fingerprint may arise. Because of the lossy nature of image transform coding,

pixel domain discontinuities often arise across the boundaries of these segments. Re-

search has shown that these discontinuities can be statistically detected even when

they are not visible [7]. These discontinuities are known as blocking artifacts, since

in the majority of cases the image segments take the form of square blocks. While

important, these fingerprints are less frequently used by forensic algorithms, and

their anti-forensic removal will be discussed in Section 4.4.

To remove transform coefficient quantization artifacts from a compressed im-

age we propose the following generalized framework. First, we model the distribution

of the transform coefficients for a given subband prior to quantization using a pa-

76

rameteric model P (X = x) = f(x, θ) with parameter θ. Next, we estimate the value

of θ from the quantized transform coefficients. We then anti-forensically modify each

quantized transform coefficient by adding specially designed noise, which we refer

to as anti-forensic dither, to its value according to the equation

Z = Y +D, (4.3)

where D is the anti-forensic dither and Z is the anti-forensically modified coefficient.

The distribution of the anti-forensic dither is chosen so that it corresponds to a

renormalized and recentered segment of the model distribution for that subband,

where the segment is centered at the quantized coefficient value and the segment’s

length is equal to the length of the quantization interval. Because the probability

that the quantized coefficient value is qk is given by

P (Y = qk) =

∫ bk+1

bk

f(x, θ)dx, (4.4)

the anti-forensic dither’s distribution is given by the formula

P (D = d|Y = qk) =
f(qk + d, θ)
∫ bk+1

bk
f(x, θ)dx

1(bk ≤ qk + d < bk+1). (4.5)

As a consequence of this, the anti-forensic dither distribution will be conditionally

dependent not only upon the value of θ, but on the value of the coefficient to which

the dither is to be added as well.

Choosing the anti-forensic dither distribution in this manner yields two main

benefits; the anti-forensically modified coefficient distribution will theoretically match

the transform coefficient distribution before quantization and an upper bound can

be placed on the distance between each unquantized transform coefficient and its

77

anti-forensically modified counterpart. To prove the first property, we make use of

the fact that P (Z = z|Y = qk) = P (D = z − qk|Y = qk). We then use the law of

total probability to write an expression for the anti-forensically modified coefficient

distribution as follows:

P (Z = z) =
∑

k

P (Z = z|Y = qk)P (Y = qk),

=
∑

k

(

f(qk + (z − qk), θ)
∫ bk+1

bk
f(x, θ)dx

1(bk ≤ qk + d < bk+1)

)

∫ bk+1

bk

f(x, θ)dx,

=
∑

k

f(z, θ)1(bk ≤ qk + d < bk+1),

= f(z, θ),

(4.6)

thus proving P (Z = z) = P (X = z). This is important because it proves that

forensic analysis of the transform coefficient distribution of an image should be

unable to distinguish an unaltered image from an anti-forensically modified one,

provided that the distribution of unmodified coefficients is modeled accurately and

the parameter θ is correctly estimated.

An upper bound can be placed on the distance between an unquantized trans-

form coefficient value and its anti-forensically modified counterpart by first examin-

ing the distance between an unquantized coefficient and its corresponding quantized

value. Assuming that each quantized value lies at the center of its corresponding

quantization interval, this distance can be trivially bounded as follows

|X − Y | ≤ max
k

1
2
|bk − bk+1|. (4.7)

Because each anti-forensically modified coefficient value must lie within the quan-

78

tization interval encompassing the modified quantized coefficient value, the bound

placed on |X−Y | also holds for |Y −Z|. As a result, the distance between an unquan-

tized and anti-forensically modified transform coefficient value is upper bounded by

|X − Z| ≤ max
k

|bk − bk+1|. (4.8)

If the transform coefficients are subjected to uniform quantization, i.e. |bk− bk+1| =

Q for all k, this bound can be rewritten as |X−Z| ≤ Q. Though it is often difficult

to analytically translate distortion introduced in the transform coefficient domain

to the pixel domain, this upper bound demonstrates that the amount of distortion

introduced into the image through anti-forensic modification is determined by the

compression strength.

4.2 JPEG Anti-Forensics

In this section, we provide a brief overview of JPEG compression, then present

our anti-forensic technique designed to remove compression fingerprints from a

JPEG compressed image’s DCT coefficients.

4.2.1 JPEG Compression Overview

For a grayscale image, JPEG compression begins by segmenting an image into

a series of nonoverlapping 8 × 8 pixel blocks, then computing the two-dimensional

DCT of each block. The resulting transform coefficients are then quantized by divid-

ing each coefficient value by its corresponding entry in predetermined quantization

matrix Q, then rounding the resulting value to the nearest integer. Accordingly,

79

a quantized DCT coefficient at the (i, j) block position is represented by the value

X̂ = round(X
Qi,j

). Finally, the binary representations of each quantized DCT co-

efficient are reordered into a single bit stream using the zigzag scan order, then

losslessly encoded. Color images are compressed in a similar manner, however they

require additional preprocessing. First, the image is transformed from the RGB to

the YCbCr color space. Next, the chrominance layers are typically downsampled

by a factor of two in both the horizontal and vertical directions. After this has

been performed, compression continues as if each color layer were an independent

grayscale image.

A JPEG image is decompressed by first losslessy decoding the bit stream, then

rearranging the integer representations of the quantized DCT coefficients back into

their original 8 × 8 block form. Next, the DCT coefficient values are dequantized

by multiplying the integer representation of each DCT coefficient value by its cor-

responding entry in the quantization matrix. The inverse DCT of each block of

coefficients is computed and the resulting pixel values are projected back into the

set P of allowable pixel values. The decompressed grayscale image or color layer

is then reassembled from the series decoded blocks. If a color image that was sub-

ject to chrominance layer downsampling is decompressed, each of the downsampled

layers are returned to their original size through interpolation, then the image is

transformed back into the RGB color space.

As was discussed in Section 4.1, JPEG compression will result in two forensi-

cally significant fingerprints: DCT coefficient quantization fingerprints and blocking

artifacts. DCT coefficient quantization fingerprints, which can be seen in the DCT

80

coefficient histograms displayed in Figure 4.1, correspond to the clustering of DCT

coefficient values around integer multiples of their corresponding entry in the quan-

tization. This occurs because a quantized DCT coefficient value Y is related to

its unquantized counterpart by the equation Y = Qi,j round(
X
Qi,j

). JPEG blocking

artifacts are the discontinuities which occur across the 8× 8 pixel block boundaries

that arise due to pixel value perturbations caused by DCT coefficient quantization.

Anti-forensic removal of these fingerprints will be discussed in detail in Section 4.4.

4.2.2 DCT Coefficient Quantization Fingerprint Removal

In accordance with the anti-forensic framework which we outlined in Section

4.1, we begin by modeling the distribution of coefficient values within a particular

AC DCT subband using the Laplace distribution [23]

P (X = x) = λ
2
e−λ|x|. (4.9)

Though we use this model for each AC subband of the DCT, each subband will

have its own unique value of λ. Using this model and the quantization rule de-

scribed above, the coefficient values of an AC subband of DCT coefficients within

a previously JPEG compressed image will be distributed according to the discrete

Laplace distribution

P (Y = y) =































1− e−λQi,j/2 if y = 0,

e−λ|y| sinh(
λQi,j

2
) if y = kQi,j ,

0 otherwise,

(4.10)

where k ∈ Z, k 6= 0.

81

To anti-forensically modify a previously JPEG compressed image, we first

perform the initial steps in JPEG compression (i.e. color space transformation, seg-

mentation into blocks, DCT) to obtain a set of DCT coefficients from the image.

Because the final stages of JPEG decompression involve projecting the decompressed

pixel values back into P , the DCT coefficient values obtained from the image will

be perturbed from their quantized values. We assume these perturbations are small

enough that they do not move a coefficient value into a different quantization inter-

val. As a result, the quantized coefficient values can be obtained by repeating the

quantization process upon the perturbed coefficients Y ′ so that Y = Qi,j round(
Y ′

Qi,j
).

Next, we obtain a maximum likelihood estimate the model parameter λ in-

dependently for each AC subband of DCT coefficients using the quantized coef-

ficients [36]. By doing this, we can use our model obtain an estimate of each AC

subband’s coefficient distribution before JPEG compression. We define N = N0+N1

as the total number of observations of the current DCT subband, N0 as the number

DCT subband of coefficients taking the value zero, N1 as the number of non-zero

valued coefficients, and S =
∑N

k=1|yk|. The model parameter estimate, which we

denote λ̂, is calculated using the equation

λ̂ = −
2

Qi,j

ln(γ), (4.11)

where γ is defined as

γ =
−N0Qi,j

2NQi,j + 4S
+

√

N2
0Q

2
i,j − (2N1Qi,j − 4S)(2NQi,j + 4S)

2NQ+ 4S
. (4.12)

After λ has been estimated, we add anti-forensic dither to each DCT coefficient

in an AC subband. Because we model the coefficient distribution before quantization

82

using the Laplace distribution, the expression for the anti-forensic dither’s distribu-

tion given in (4.5) simplifies to one of two equations depending upon the magnitude

of the quantized DCT coefficient value to which the dither is added. For zero-valued

quantized coefficients, the anti-forensic dither distribution is chosen to be

P (D = d|Y = 0) =















1
c0
e−λ̂|d| if

−Qi,j

2
≥ n >

Qi,j

2
,

0 otherwise,

(4.13)

where c0 = 1−e−λ̂Qi,j/2. The distribution of the anti-forensic dither added to nonzero

quantized DCT coefficients is

P (D = d|Y = qk) =















1
c1
e− sgn(qk)λ̂(d+Qi,j/2) if

−Qi,j

2
≥ n >

Qi,j

2
,

0 otherwise,

(4.14)

where c1 = 1

λ̂
(1 − e−λ̂Qi,j). An important benefit of the anti-forensic dither dis-

tributions taking these forms is that they reduce the complexity of generating the

anti-forensic dither. Rather than drawing dither samples from a number of distri-

butions equal to the number of distinct quantized DCT coefficient values within an

AC subband, anti-forensic dither samples need only to be drawn from one of the

two distributions displayed in (4.13) and (4.14).

As we demonstrated for the general case in (4.6), using these anti-forensic

dither distributions will ensure that the distribution of anti-forensically modified

DCT coefficients within an AC subband will match its modeled unquantized coeffi-

cient distribution. By using the expressions for the quantized coefficient distribution

as well as the anti-forensic dither distribution given in (4.10), (4.13), and (4.14), and

83

using the law of total probability we may write

P (Z = z) =
∑

k

P (Z = z|Y = qk)P (Y = qk)

=
∑

qk 6=0

1
c1
e− sgn(qk)λ̂(z−qk+Qi,j/2)e−λ̂|qk| sinh(

λ̂Qi,j

2
)1(|z − qk| ≤

Qi,j

2
)

+ 1
c0
e−λ̂|z|(1− e−λ̂Qi,j/2)1(|z| ≤

Qi,j

2
)

= λ̂
2
e−λ̂|z|.

(4.15)

In most quantization tables, larger quantization step sizes are used for high

frequency DCT subbands because changes to these subbands are less perceptually

significant. Furthermore, it has been observed that the variance of coefficient values

within a DCT subband decreases as one moves from low frequency to high frequency

subbands. Because of this, all of the coefficient values of certain high frequency DCT

subbands will be quantized to zero in some images during JPEG compression. Cor-

respondingly, no estimate of λ can be obtained for these DCT subbands, rendering

us unable to anti-forensically modify their coefficient values. Fortunately, the DCT

coefficient value perturbations caused by the final steps in JPEG decompression re-

sult the coefficient values of these subbands taking on a plausible distribution, as

can be seen in Figure 4.2. As a result, we do not need to anti-forensically modify

the coefficients of these DCT subbands.

Because the distribution of the DC subband of DCT coefficients varies greatly

from image to image, no accurate parametric model for this distribution exists.

Instead, we model the distribution of DC subband of unquantized DCT coefficients

as being uniformly distributed within a quantization interval. As a consequence, we

are able to create a set of anti-forensically modified coefficients whose distribution

84

−3 −2 −1 0 1 2 3
0

2000

4000

6000

8000

10000

12000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.2: Histogram of perturbed DCT coefficient values from a DCT subband in which all

coefficients were quantized to zero during JPEG compression.

approximates the unquantized distribution by adding uniformly distributed anti-

forensic dither to the quantized DC subband of DCT coefficients. The dither is

chosen to be zero mean over a support interval equal in length to the quantization

interval so that

P (D = d) =















1
Qi,j

if
−Qi,j

2
≤ n <

Qi,j

2
,

0 otherwise.

(4.16)

Though this could in theory introduce step discontinuities into the distribution of

the DC subband of anti-forensically modified DCT coefficients, we have experimen-

tally observed that this is rarely the case. The absence of step discontinuities from

the empirical distribution of anti-forensically modified coefficients is likely due to

the fact that the dynamic range of DC DCT values is typically sufficiently large in

comparison to the quantization interval that relatively few DC coefficients are quan-

tized to any given value. As a result, too few anti-forensically modified coefficient

values exist over an interval for step discontinuities to be discernible.

After the anti-forensically modified DCT coefficients are obtained, the inverse

DCT of each block of coefficients is performed and the resulting blocks of pixel values

85

Figure 4.3: Chrominance layer reconstruction interleaving pattern.

are assembled into the anti-forensically modified image. If a color image subjected to

chrominance layer downsampling during JPEG compression undergoes anti-forensic

modification, a number equal to the downsampling factor of independently gener-

ated anti-forensically modified versions of each downsampled chrominance layer is

created. Each independent version of the anti-forensically modified downsampled

chrominance layer is then interleaved to create one equal in size to the full sized

image. For images that undergo chrominance layer downsampling by a factor of

two in each direction as is most commonly the case, the anti-forensically modified

downsampled layers are interleaved using the pattern shown in Figure 4.3.

4.3 Wavelet-Based Image Compression Anti-Forensics

In this section, we begin by providing a brief overview of several wavelet-

based image compression techniques and their forensically significant compression

fingerprints. After this, we present our anti-forensic technique designed to remove

compression fingerprints from the wavelet coefficients of an image compressed using

a wavelet-based technique.

86

4.3.1 Wavelet-Based Compression Overview

Though several wavelet-based image compression techniques exist such as

SPIHT, EZW, and most popularly JPEG 2000, they all operate in a similar fashion

and leave behind similar compression fingerprints. Techniques such as JPEG 2000

begin compression by first segmenting an image into fixed sized nonoverlapping rect-

angular blocks known as ‘tiles’, while others operate on the image as a whole. Next,

the two-dimensional discrete wavelet transform (DWT) of the image or each image

tile is computed, resulting in four subbands of wavelet coefficients. Because these

subbands correspond to either high (H) or low (L) frequency DWT coefficients in

each spatial dimension, the four subbands are referred to using the notation LL,

LH, HL, and HH. The DWT of the LL subband is computed an additional M − 1

times, resulting in an M -level wavelet decomposition of the image or tile.

After this, tree-based compression techniques such as SPIHT or EZW divide

the set of DWT into separate bit planes which are each processed independently.

Within each bit plane, a tree-like structure known as a significance map is con-

structed detailing the locations of nonzero coefficients at that bit level [37]. Because

the locations of zero-valued bit plane coefficients are correlated across DWT sub-

bands, this allows for the efficient storage of each bit plane. The significance maps of

each bit plane are then reordered into a single bit stream, with the map of the most

significant bit plane occurring at the beginning of the bit stream, then proceeding

in descending order of significance. To achieve lossy compression, the bit stream is

truncated to a fixed number of bits according to a predefined bit budget.

87

JPEG 2000 achieves lossy compression in an alternate manner [39]. First,

each subband of DWT coefficients is independently quantized using their own fixed

quantization step size. Next, the binary representations of the quantized coefficients

are divided into bit planes and separated into code blocks which are then entropy

coded and reordered into a single bit stream. Because compression is achieved

through quantization, the bit stream does not undergo truncation.

Image decompression begins by obtaining the set of DWT coefficients from

the bit stream. Tree-based techniques such as SPIHT or EZW accomplish this by

reforming the set of significance maps from the bit stream, then using them to

recreate each bit plane. During this process, bit plane data which was truncated

during compression is replaced with zeros. For images compressed using JPEG 2000,

the integer representation of each coefficient is decoded from the bit stream and the

quantized DWT coefficient values are obtained through the dequantization process.

Finally, the inverse DWT of the image or image tile is computed and resulting pixel

values are projected back into the set P of allowable pixel values. If tiling was used,

the full image is reassembled from the set of reconstructed tiles.

While these image compression techniques achieve lossy compression through

different processes, they each introduce DWT coefficient quantization fingerprints

into an image. For JPEG 2000, this is fairly obvious as the quantization and de-

quantization process cause the DWT coefficients in decompressed images to cluster

around integer multiples of their respective subband’s quantization step size. In

SPIHT and related algorithms, a similar process occurs because bit stream trun-

cation results in the loss of the bottom several bit planes. As a result, only the

88

−100 −50 0 50 100
0

20

40

60

80

100

120

Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−100 −50 0 50 100
0

200

400

600

800

1000

Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.4: Left: Histogram of wavelet coefficients from an uncompressed image. Right: His-

togram of wavelet coefficients from the same image after SPIHT compression.

n most significant bits of each DWT coefficient are retained. This is equivalent to

applying the quantization rule in (4.2) where X is a DWT coefficient from an un-

compressed image, Y is the corresponding DWT coefficient in its SPIHT compressed

counterpart, and

qk =































bk if k ≥ 1,

0 if k = 0,

bk+1 if k ≤ −1.

(4.17)

These DWT coefficient quantization fingerprints can be observed when viewing the

distribution of coefficient values within a particular DWT subband as seen in Figure

4.4. Additionally, if the image was tiled during compression, tiling artifacts similar

to JPEG blocking artifacts may occur in an image.

89

4.3.2 DWT Coefficient Quantization Fingerprint Removal

We model the distribution of coefficient values within a DWT subband of an

uncompressed image using the Laplace distribution [24]

P (X = x) = λ
2
e−λ|x|. (4.18)

Because the manner in which JPEG 2000 employs DWT coefficient quantization

is identical to the way in which JPEG performs DCT coefficient quantization, the

distribution of coefficients within a particular DWT subband in a previously JPEG

2000 compressed image is given by (4.10), where Qi,j is replaced by the quantiza-

tion step size used for that DWT subband. As a result, the DWT coefficients in a

previously JPEG 2000 compressed image can be anti-forensically modified using the

method outlined in Section 4.2.2. The remainder of this section will focus primarily

on SPIHT and other tree-based compression schemes whose DWT coefficient quan-

tization rules are given by (4.2) and (4.17). Using these equations along with (4.18),

the distribution of coefficient values within a DWT subband in an image previously

SPIHT or similarly compressed is given by

P (Y = qk) =































1
2
(e−λbk − e−λbk+1) if k ≥ 1,

1− 1
2
(eλb0 + e−λb1) if k = 0,

1
2
(eλbk+1 − eλbk) if k ≤ −1.

(4.19)

In order to anti-forensically modify an image previously compressed using a

wavelet-based technique, we must first obtain the set of quantized DWT coefficients

from the compressed image. To do this, we repeat the first several steps of compres-

sion including tiling the image if necessary and computing the DWT of the image

90

or set of image tiles. Since the process of projecting the decompressed pixel values

back into P during decompression perturbs the DWT coefficient values, the quan-

tized coefficient values Y must be recovered from the perturbed coefficient values

Y ′. This can be done for previously JPEG 2000 compressed images by simply reap-

plying the quantization rule used during compression. For images compressed using

SPIHT and related techniques, this is not appropriate since DWT coefficients are

quantized to values on the edge of each quantization interval and the perturbations

can move these values into a different quantization interval. Instead, we assume that

the perturbations are sufficiently small and recover the quantized coefficient values

according to the rule Y = qk if qk+qk−1

2
≤ Y ′ < qk+1+qk

2
.

Once the quantized DWT coefficient values have been recovered, we estimate

the parameter λ for each DWT subband. This is done by fitting the nonzero entries

of the histogram of each DWT subband’s coefficient values to the function

hk = ce−λ̂|qk|, (4.20)

where λ̂ is the estimated value of λ, hk denotes the the histogram value at qk, and c is

a scaling constant. By linearizing (4.20) by taking the logarithm of both sides of the

equation, this fitting problem can be reformulated as the least squares minimization

problem

min
λ̂,c

∑

k

hk(log hk − log c+ λ̂|qk|)
2, (4.21)

where the model errors have been weighted by hk, the number of observations of

each quantized DWT coefficient value. To solve this minimization problem, we take

the derivative with respect to λ̂ and c of the function to be minimized in (4.21), set

91

these derivatives to zero, then reformulate the resulting equations into the matrix









∑

k hk
∑

k |qk|hk

∑

k |qk|hk
∑

k |qk|
2hk log hk

















log c

−λ̂









=









∑

k hk log hk

∑

k |qk|hk log hk









, (4.22)

We then solve (4.22) for λ̂ and c.

Though this estimate yields satisfactory results under ideal circumstances, in

practice bit stream truncation effects often lead to a mismatch between our model

of the DWT coefficient distribution and the histogram of DWT coefficient values

obtained from a previously compressed image. Because the point at which the

bit stream is truncated rarely corresponds to the boundary between bit planes, a

significant number of entries in the lowest bit plane are often set to zero. This

results in an artificial decrease in the number of DWT coefficients taking the values

q1 and q−1, and an artificial increase in the number of coefficients taking the value

0 over the number of coefficients predicted by our model. This, in turn, leads to

an estimation bias which we compensate for using an iterative process to refine our

estimate of λ.

We initialize our iterative procedure by setting h
(1)
k = hk for all k, λ̂(0) = 0,

and the initial iteration index to i = 1. We then repeat the following steps until the

termination criteria is met:

1. Estimate λ̂(i) and c(i) by solving (4.22) using the current histogram iterate ĥ(i)

in lieu of h.

92

2. Update the histogram estimate according to the equation:

ĥ
(i+1)
k =































c(i) if k = 0,

hk +
1
2
(h0 − c(i)) if k = ±1,

hk otherwise.

(4.23)

3. Terminate if λ̂(i)−λ̂(i−1)

λ̂(i)
< τ , where τ is a user defined threshold. Otherwise,

set i = i+ 1 and return to Step 1.

After this process is terminated, the final value of λ̂(i) is retained as the parameter

estimate λ̂.

Before anti-forensic dither can be added to the quantized DWT coefficients,

the mismatch between between our model of the DWT coefficient distribution and

the true DWT coefficient histogram must be corrected. Because bit stream trunca-

tion can occur anywhere within the least significant retained bit plane, we cannot

accurately predict the number of components of that bit plane that will be set to

zero. Accordingly, we cannot appropriately adjust our model to take partial bit

plane truncation into account. Instead, we modify the DWT coefficient histogram

to match our model by changing a number of DWT coefficient values from 0 to q1

or q−1. We calculate Ne, the number of zero valued DWT coefficients in excess of

what our model predicts using the equation

Ne = h0 −Ns(1−
1
2
(eλ̂b0 + e−λ̂b1)), (4.24)

where Ns is the total number of DWT coefficients in the current subband. We then

randomly change the values of Ne

2
zero valued DWT coefficients to q1 and Ne

2
zero

93

valued coefficients to q−1. After this modification, the DWT coefficient distribution

should theoretically match our model.

Once a value of λ̂ has been obtained for a DWT subband and the necessary

histogram modifications have been performed, we generate the anti-forensic dither

which is added to each DWT coefficient. As was the case with anti-forensic dither

designed to modify JPEG compressed images, the use of the Laplace distribution to

model the distribution of DWT coefficient values in an uncompressed image allows

the anti-forensic dither distribution to be expressed using one of two equations. An

analogous reduction in the complexity of generating the dither is realized as well,

since once again the dither is drawn from only two distributions. The appropriate

expression for the anti-forensic dither distribution depends upon the magnitude of

the DWT coefficient to which it is added. When modifying nonzero valued DWT

coefficients, the anti-forensic dither’s distribution is given by

P (D = d|Y = qk, k 6= 0) =















1
αk
e− sgn(qk)λ̂d if (bk − qk) ≤ d < (bk+1 − qk),

0 otherwise,

(4.25)

where αk = 1

λ̂
(e− sgn(qk)λ̂(bk−qk) − e− sgn(qk)λ̂(bk+1−qk)). When modifying zero valued

DWT coefficients, the anti-forensic dither’s distribution is

P (D = d|Y = 0) =















1
α0
e−λ̂|d| if b0 > d > b1,

0 otherwise,

(4.26)

where α0 =
1

λ̂
(2− e−λ̂b1 − eλ̂b0).

Assuming that we accurately estimate our model parameter so that λ̂ = λ

and that we accurately correct for truncation effects, the distribution of the anti-

94

forensically modified coefficients in each DWT subband matches the model uncom-

pressed coefficient distribution. Following the framework outlined in (4.6), we can

demonstrate this by using the law of total probability as well as (4.19), (4.25), and

(4.26) to write

P (Z = z) =
∑

k

P (Z = z|Y = qk)P (Y = qk)

=
∑

k≤−1

1
αk
eλ(z−qk) 1

2
(eλbk+1 − eλbk)1(bk ≤ z < qk+1)

+ 1
α0
e−λ|z|(1− 1

2
(eλb0 + e−λb1))1(b0 ≤ z < b1)

+
∑

k≥1

1
αk
e−λ(z−qk) 1

2
(e−λbk − e−λbk+1)1(bk ≤ z < qk+1)

= λ
2
e−λ|z|.

(4.27)

Additionally, we can place an upper bound on the absolute distance between

an DWT coefficient from an image compressed using a wavelet-based technique

and its uncompressed counterpart. For images compressed using SPIHT or related

techniques, the addition of anti-forensic dither will not move a DWT coefficient

outside of its quantization interval, with the exception of zero-valued coefficients

which remain in the interval [b−1, b2). Since the corresponding uncompressed DWT

coefficient must lie in the same interval, the upper bound on this distance becomes

|X − Z| ≤















bk+1 − bk if k 6= 1,

b2 − b−1 if k = 0,

(4.28)

given bk ≤ X ≤ bk+1. Because JPEG 2000 applies uniform quantization to the

coefficient values within each DWT subband, we can use the upper bound given in

(4.8) to write

|X − Z| ≤ Q (4.29)

95

where Q is the quantization step size used to quantize the coefficients that DWT

subband.

4.4 Anti-Forensic Blocking Artifact Removal

As was discussed in Section 4.1, if an image is divided into segments dur-

ing compression, discontinuities are often present across segment boundaries in the

decompressed image. These compression fingerprints, known as blocking artifacts,

are commonly present in JPEG compressed images and can arise in JPEG 2000

compressed image if tiling is used. Even when blocking artifacts are not visually

discernible, they can still be statistically detected [7]. Though the application of

anti-forensic dither to an image removes transform coefficient quantization finger-

prints, it does not remove blocking artifacts. If a previously compressed image is to

be represented as never having undergone compression, these fingerprints must be

removed.

While the removal of JPEG blocking artifacts is a well studied problem [25,58],

these techniques are designed to remove visible traces of blocking from low to mid

quality images. To be successful, an anti-forensic deblocking technique must remove

all visual and statistical traces of blocking artifacts without resulting in forensically

detectable changes to an image’s transform coefficient distributions or introducing

new, forensically detectable fingerprints. Because existing deblocking algorithms are

not designed to account for these criteria, they are poorly suited for anti-forensic

purposes.

96

In order to remove statistical traces of blocking artifacts, we propose an anti-

forensic deblocking technique that operates by first median filtering an image then

adding adding low-power white Gaussian noise to each of its pixel values. Letting

ui,j and vi,j denote the value of a pixel at location (i, j) in an unmodified image and

its deblocked counterpart respectively, our anti-forensic deblocking operation can be

expressed as

vi,j = meds(ui,j) + ni,j (4.30)

where ni,j is a zero mean Gaussian random variable with variance σ2. In this equa-

tion, meds denotes a two dimensional median filter with a square window of size s

pixels, explicitly defined as meds(ui,j) = median{ul,m|0 ≤ ⌊ (i−l)
2

⌋ ≤ s, 0 ≤ ⌊ (j−m)
2

⌋ ≤

s}. We choose to use a median filter instead of a linear lowpass filter because its

edge preserving nature tends to result in less visual distortion than simple linear

filters. Both the window size of the median filter and the variance of the noise can

be tuned according to the strength of the blocking artifacts present in the image.

Heavily compressed images require the use of a larger median filter window size and

greater noise variance to remove statistical traces of blocking artifacts than lightly

compressed images. We compare the anti-forensic performance of this technique to

those of existing deblocking algorithms in Section 4.5.3.

4.5 Experimental Results

In order to verify the efficacy of each of our proposed anti-forensic techniques,

we have conducted a number of experiments in which we use our anti-forensic tech-

97

niques to remove compression fingerprints from a set of images, then test each image

for evidence of prior compression using several existing forensic techniques. In this

section, we present the results of these experiments and analyze the performance of

each proposed anti-forensic technique.

4.5.1 JPEG Anti-Forensics

To demonstrate that our anti-forensic DCT coefficient quantization fingerprint

removal technique can be used on an image without significantly impacting its visual

quality, we show a typical image before and after anti-forensic modification in Figure

4.5. In this figure, the image on the left has undergone JPEG compression using a

quality factor of 65 while the image on the right is the JPEG compressed image after

anti-forensic dither has been added to its DCT coefficients. No noticeable differ-

ence between these images is apparent after visual inspection. This is reinforced by

the fact that the PSNR between the two images is 41.63 dB. More importantly, the

anti-forensically modified image contains no visual indicators of either previous com-

pression or anti-forensic modification. Since a forensic examiner will not have access

to either the unaltered or compressed version of an anti-forensically modified image,

these cannot be compared against the anti-forensically modified image. Instead,

what is necessary is that the anti-forensically modified image plausibly appears to

have never been compressed.

Inspection of the DCT coefficient value distributions of the images shown in

Figure 4.5 yeilds similar results. Figure 4.6 shows a histogram of coefficient values

98

Figure 4.5: Left: JPEG compressed image using a quality factor of 65. Right: Anti-forensically

modified version of the same image.

in the (2,2) DCT subband in an uncompressed version of these images along with

the corresponding coefficient value histograms from the JPEG compressed and anti-

forensically modified images. Figure 4.7 shows the histogram of coefficient values

in the DC DCT subband of the same images. While DCT coefficient quantization

fingerprints are present in the histograms taken from the JPEG compressed image,

these fingerprints are absent in the coefficient value histograms corresponding to the

uncompressed and anti-forensically modified images. Again, we note that in reality

a forensic examiner will only have access to the anti-forensically modified image and

will be unable to make note of minor differences between the coefficient histograms

of the uncompressed and anti-forensically modified image. The fact that the DCT

coefficient value histograms from the anti-forensically modified image both fit our

coefficient distribution model and contain no compression fingerprints suggests that

our proposed anti-forensic technique is capable of producing images that can be

passed off as never having undergone JPEG compression.

To verify that our anti-forensic technique is able to produce images that can

99

−300 −200 −100 0 100 200 300
0

500

1000

1500

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−300 −200 −100 0 100 200 300
0

2000

4000

6000

8000

10000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−300 −200 −100 0 100 200 300
0

500

1000

1500

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.6: Histogram of coefficient values from the (2,2) DCT subband taken from an uncom-

pressed version of the image shown in Fig. 4.5 (left), the same image after JPEG compression

(center), and an anti-forensically modified copy of the JPEG compressed image(right).

0 500 1000 1500 2000
0

20

40

60

80

100

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

0 500 1000 1500 2000
0

100

200

300

400

500

600

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

0 500 1000 1500 2000
0

20

40

60

80

100

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.7: Histogram of coefficient values from the DC DCT subband taken from an uncom-

pressed version of the image shown in Fig. 4.5 (left), the same image after JPEG compression

(center), and an anti-forensically modified copy of the JPEG compressed image(right).

fool existing forensic compression detection techniques, we conducted the follow-

ing larger scale experiment. First, we converted each of the 1338 images in the

Uncompressed Colour Image Database [38] to grayscale, then we compressed each

image using a quality factor of 90, 70, and 50. Next, we removed DCT coefficient

quantization fingerprints from the JPEG compressed images by adding anti-forensic

dither to the DCT coefficients of each image. Each of the anti-forensically modi-

fied images was then tested for DCT coefficient quantization fingerprints using the

forensic technique developed by Fan and de Queiroz [7]. This technique detects pre-

100

vious applications of JPEG compression by using the DCT coefficient distributions

to estimate the quantization step size used in each DCT subband during JPEG

compression. If no evidence of quantization is present in any DCT subband, the

image is classified as never-compressed. When we used this technique to search for

evidence of JPEG compression in the anti-forensically modified images, it classified

each anti-forensically modified image as never-compressed regardless of the quality

factor used during compression. These results correspond to a 100% success rate

for our anti-forensic DCT coefficient quantization fingerprint removal technique on

this data set.

4.5.2 Wavelet Anti-Forensics

We conducted a set of experiments similar to those in Section 4.5.1 on SPIHT

compressed images to demonstrate the effectiveness of our anti-forensic DWT coef-

ficient compression fingerprint removal technique. Figure 4.8 shows a typical image

compressed at a bitrate of 3.0 bpp using the SPIHT algorithm both before and after

anti-forensic dither has been added to its DWT coefficients. As was the case in our

JPEG compression anti-forensics example, the two images contain no discernible

differences and the anti-forensically modified image shows no signs of compression

or anti-forensic modification. Furthermore, the PSNR between these two images is

50.99dB. This result suggests that our anti-forensic DWT coefficient compression

fingerprint removal technique will create images containing no visual indicators of

compression or anti-forensic modification.

101

Figure 4.8: Left: An image compressed using the SPIHT algorithm at a bit rate of 3 bits per

pixel before the use of entropy coding. Right: The same image after anti-forensic dither has been

applied to its wavelet coefficients.

Figure 4.9 shows the DWT coefficient histograms obtained from the fourth

level HH subband of an uncompressed copy of the image shown in Figure 4.8 as

well as from SPIHT compressed and anti-forensically modified versions of the same

image. We note that the compression fingerprints observed in the DWT coefficient

histogram from the SPIHT compressed image are absent from the DWT coeffi-

cient histogram corresponding to the anti-forensically modified image. This, along

with the fact that the anti-forensically modified image’s DWT coefficient histogram

matches our coefficient distribution model, demonstrates that our anti-forensic DWT

coefficient compression fingerprint removal technique is capable of modifying images

so that they can be passed off as never having undergone wavelet-based compression.

In addition to the experimental results discussed above, we conducted a large

scale experiment to demonstrate that our anti-forensic technique is capable of mis-

leading existing forensic wavelet-based compression detection algorithms. To do

this, we again converted each of the 1338 images in the Uncompressed Colour Im-

102

−60 −40 −20 0 20 40 60
0

1000

2000

3000

4000

5000

6000

7000

Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−60 −40 −20 0 20 40 60
0

0.5

1

1.5

2

2.5
x 10

4

Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−60 −40 −20 0 20 40 60
0

1000

2000

3000

4000

5000

6000

7000

Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.9: Histogram of wavelet coefficients from the fourth level HH subband of a four level

wavelet decomposition of the image shown in Fig. 4.8 (left), the same image after SPIHT com-

pression (center), and the compressed image after anti-forensic dither has been applied (right).

age Database [38] to grayscale, then compressed them using the SPIHT algorithm

at a bitrate of 2.0 bpp. We then removed image compression fingerprints from each

image by adding anti-forensic dither to each image’s DWT coefficients. Finally, we

used the compression detection technique developed by Lin et al. [26] to test each

image for evidence of prior wavelet-based compression. This detector was trained

using the uncompressed and SPIHT compressed images, resulting in a classification

rule that was able to correctly identify 99.8% of the SPIHT compressed images while

only misclassifying 2.0% of the uncompressed images. When we used the trained

wavelet-compression detection algorithm to classify the set of anti-forensically mod-

ified images, it was only able to correctly classify 1.2% of them as having undergone

compression, resulting in a 98.2% success rate for our anti-forensic DWT compres-

sion fingerprint removal technique.

103

4.5.3 Anti-Forensic Deblocking

To evaluate our anti-forensic deblocking algorithm, we conducted an experi-

ment in which we used it to remove blocking artifacts from several anti-forensically

modified images, then compared its performance with those of the JPEG deblocking

algorithms proposed by Liew and Yan [58], and Zhai et al. [58]. To perform this

experiment, we first converted to grayscale and JPEG compressed each of the 1338

images in the Uncompressed Colour Image Database using quality factors of 90, 70,

50, 30, and 10, then applied anti-forensic dither to the DCT coefficients of each of

the compressed images. This created a testing database of 6690 anti-forensically

modified grayscale images. Next, we used our anti-forensic deblocking algorithm

along with the deblocking algorithms proposed by Liew and Yan, and Zhai et al. to

remove JPEG blocking artifacts from each image.

We tested each of the deblocked images for JPEG blocking fingerprints using

the test designed by Fan and de Queiroz [7]. This method operates by collecting two

pixel difference measurements throughout an image; one taken at the center of each

block, which we refer to as R1 and a second, which we refer to as R2, taken across

the boundary that occurs at the corners of each set of four adjacent blocks. Next,

histograms of the R1 and R2 values obtained throughout the image, denoted h1 and

h2 respectively, are tabulated. Finally, a test statistic K measuring the difference

between the two histograms is computed according to the equation

K =
∑

r

|h1(r)− h2(r)|, (4.31)

and K is compared to a threshold. If K is greater than the threshold, the image is

104

Proposed Method Liew Zhai

Quality s = 3, s = 3, s = 2, & Yan et al.

Factor σ2 = 3 σ2 = 2 σ2 = 2 [58] [25]

90 0.0% 0.0% 0.2% 52.5% 98.3%

70 0.0% 0.1% 0.8% 76.3% 96.3%

50 0.2% 0.2% 1.6% 96.8% 96.1%

30 0.3% 10.5% 24.1% 99.2% 93.7%

10 49.0% 79.0% 95.9% 99.0% 70.8%

Table 4.1: Blocking artifact detection rates.

classified as one which contains blocking artifacts.

We used the uncompressed and JPEG compressed images from our database

to train this forensic blocking artifact detector and selected a decision threshold

corresponding to a 99.1% probability of detecting blocking artifacts with a false

detection rate of 0.0%. The trained detector was then used to test each of the

deblocked images for blocking artifacts. Block artifact detection rates obtained

from this experiment are shown in Table 4.1. As we can see from this table, the

deblocking methods of Liew and Yan, and Zhai et al. are poorly suited for removing

statistical trace of blocking fingerprints from compressed images. By contrast, if

the parameters s and σ2 are properly chosen, our proposed algorithm is capable

of removing statistical traces of blocking artifacts from images previously JPEG

compressed at quality factors of 30 and above.

105

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

n

h(
n)

h
1
(n)

h
2
(n)

(a)

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

h(
n)

h
1
(n)

h
2
(n)

(b)

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

n

h(
n)

h
1
(n)

h
2
(n)

(c)

0 10 20 30 40
0

0.05

0.1

0.15

0.2

n

h(
n)

h
1
(n)

h
2
(n)

(d)

0 10 20 30 40
0

0.05

0.1

0.15

0.2

n

h(
n)

h
1
(n)

h
2
(n)

(e)

Figure 4.10: Histograms of R1 and R2 blocking artifact detection statistics obtained from (a) an

uncompressed image, (b) the same image after JPEG compression using a quality factor of 70, as

well as the JPEG compressed version after it has been deblocked using (c) our anti-forenic deblock-

ing algorithm, (d) the deblocking algorithm proposed by Liew and Yan, and (e) the deblocking

algorithm proposed by Zhai et al..

106

Additionally, we have discovered that existing deblocking techniques leave be-

hind their own fingerprint. We have observed that under normal circumstances,

h1(1) < h1(0) and h2(1) < h2(0) in an uncompressed image. This can be seen in

Figure 4.10 which shows the R1 and R2 histograms obtained from a typical image

before and after JPEG quantization as well as after the JPEG compressed image was

deblocked using our anti-forensic technique and those proposed by Zhai et al., and

Liew and Yan. By contrast, h1(1) > h1(0) and h2(1) > h2(0) in images deblocked

using the Zhai et al., and Liew and Yan techniques. This histogram feature can be

used as a fingerprint indicating that an image has been deblocked using one of these

algorithms. As Figure 4.10 shows, this fingerprint is not present in images modified

by our anti-forensic deblocking technique, indicating that it is much better suited

for anti-forensic purposes.

Though our anti-forensic dither and deblocking techniques can successfully

remove statistical traces of compression artifacts from heavily compressed images,

they cannot compensate for significant visual distortion caused by the initial appli-

cation of compression. For heavily compressed images, they can serve to significantly

increase the distortion present in an image. Figure 4.11 shows a typical image after

JPEG compression using several quality factors followed by the anti-forensic removal

of both its DCT coefficient quantization fingerprints and its blocking fingerprints.

While the images compressed using quality factors of 70 and 90 appear to be unal-

tered, the images compressed with a quality factor of 30 and below contain noticable

distortions. Accordingly, as an image is more heavily compressed, it more difficult

to convincingly disguise both visual and statistical traces of its compression history.

107

(a) (b)

(c) (d)

(e)

Figure 4.11: Results of the proposed anti-forensic deblocking algorithm applied to a typical

image after it has been JPEG compressed using a quality factor of (a) 90, (b) 70, (c) 50, (d) 30,

and (e) 10 followed by the addition of anti-forensic dither to its DCT coefficients.

108

4.6 Undetectable Image Tampering Using Anti-Forensics

In many scenarios, an image forger is not concerned with representing a pre-

viously compressed image as one which has never undergone compression. More

likely, the image forger wishes to alter an image, then remove all evidence that the

image has been manipulated. In such a scenario, the image forger must pay par-

ticular attention to an image’s compression history. Because most digital cameras

store images as JPEGs by default, many digital images are imprinted with com-

pression fingerprints at the time of their capture. If an image contains evidence

that it has been compressed multiple times, this suggest that the image has been

decompressed for editing, then saved again in a compressed format. If the forger

attempts to avoid the fingerprints left by multiple applications of compression by

saving an image in an uncompressed format after editing, the fingerprints left by

the initial application of compression will reveal evidence of image manipulation.

Furthermore, spatial inconsistencies in an image’s compression fingerprints are of-

ten used as forensic evidence of cut-and-paste forgery, in which a composite image

is formed by cutting an object from one image, then pasting it into another. If used

properly, the anti-forensic techniques outlined in this chapter can either remove or

prevent the occurrence of each of these image tampering fingerprints.

Recompression of a JPEG image, commonly referred to as double JPEG com-

pression, introduces a unique fingerprint in an image’s DCT coefficient distributions.

During the initial application of JPEG compression, DCT coefficient quantization

causes an image’s DCT coefficients to cluster around integer multiples of a particu-

109

lar DCT subband’s quantization step size. When the image is compressed a second

time using a different quantization table, some DCT subbands will be quantized us-

ing a different quantization step size. This mismatch in quantization step sizes will

cause an unequal number of DCT coefficient clusters to fall within each new quan-

tization interval. As a result, the DCT coefficient distributions of a double JPEG

compressed image will appear to be modulated by a periodic signal. A number of

forensic techniques use this signal to identify double JPEG compression [32,33].

To prevent double JPEG compression fingerprints from occurring in a dou-

bly compressed image, an image forger can add anti-forensic dither to a singly

compressed image’s DCT coefficients before it is recompressed. By doing this, the

image’s DCT coefficients will be distributed as if they came from an uncompressed

image rather than being clustered around integer multiples of the first quantiza-

tion step size. When the image is recompressed, quantization interval mismatch

effects will not occur, allowing the double JPEG compressed image’s DCT coeffi-

cients to be distributed as if they came from an image compressed only once. Since

the image will remain JPEG compressed in its final state, it does not need to be

anti-forensically deblocked.

An example demonstrating that anti-forensic dither can be used to prevent

double JPEG compression fingerprints is shown in Figure 4.12. In this example, we

show coefficient histograms from the (3,3) DCT subband of an image compressed

once using a quality factor of 85, the same image after it has been double compressed

using a quality factor 75 followed by 85, as well as the image compressed first with

a quality factor 75, then anti-forensically modified and recompressed using a quality

110

−50 0 50
0

2000

4000

6000

8000

10000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−50 0 50
0

2000

4000

6000

8000

10000

12000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

−50 0 50
0

2000

4000

6000

8000

DCT Coefficient Value

N
um

be
r

of
 C

oe
ffi

ci
en

ts

Figure 4.12: Histogram of (3,3) DCT coefficients from an image JPEG compressed once using a

quality factor of 85 (Left), the image after being double JPEG compressed using a quality factor

of 75 followed by 85 (Center), and the image after being JPEG compressed using a quality factor

of 75, followed by the application of anti-forensic dither, then recompressed using a quality factor

of 85 (Right).

factor of 85. While double JPEG compression fingerprints can be observed in the

coefficient histogram of the doubly JPEG compressed image that did not have anti-

forensic dither added to its DCT coefficients, these fingerprints are absent from

the coefficient histogram of the image that underwent anti-forensic modification.

Additionally, the coefficient histogram of the anti-forensically modified double JPEG

compressed image does not differ greatly from the coefficient histogram of the singly

compressed image. This verifies that under forensic inspection, the anti-forensically

modified image would appear to only have only been compressed once.

If two JPEG compressed images are used to create a cut-and-paste forgery,

the composite image will contain double JPEG compression fingerprints that differ

spatially. These locally varying fingerprints can be used to both detect forged images

and to identify falsified image regions [16]. Alternately, if blocking artifacts in the

pasted region do not align with those throughout the rest of the image, the resulting

mismatch in the blocking grid can be used to detect cut-and-paste forgeries [57].

111

Both of these fingerprints can be avoided if the two images used to create the forgery

have anti-forensic dither added to their DCT coefficients and are anti-forensically

deblocked before the composite image is created. Doing this will render compression

history based forensic techniques unable to detect cut-and-paste image forgeries.

In other situations, an image forger may wish to falsify the origin of an image.

Since most digital cameras and image editing software use proprietary JPEG quan-

tization tables when storing images, the camera model used to capture an image

can be determined by identifying the image’s quantization table in a list of camera

and quantization table pairings [9]. This means that information about an image’s

origin is intrinsically embedded in an image via its compression history. Software

designed to perform quantization table and camera matching known as JPEGsnoop

is readily available online [15]. As a result, an image forger cannot mislead forensic

investigators by simply changing an image’s metadata tags. While other forensic

signatures such as a camera’s sensor noise [5] and color filter array interpolation

parameters [52] can be used as a means of camera identification, these techniques

can be defeated by falsifying the sensor noise pattern [12] and by reapplying the

color filter array then re-interpolating the image [22] respectively.

An image’s origin cannot be forged by simply recompressing it using the quan-

tization table of another camera. Doing this will result in double JPEG compression

artifacts that can alert forensic investigators to the fact that the image has been

tampered with. Instead, we are able to undetectably falsify the compression history

aspects of an image’s origin by first removing traces of prior JPEG compression

through the use of anti-forensic dither, then compressing the image with the quan-

112

tization table of another camera.

To verify that our anti-forensic technique is suitable for image origin forgery

purposes, we conducted an experiment in which we falsified the compression signa-

tures of images taken by several cameras, then attempted to link each image with

its origin using existing forensic techniques. For this experiment, we compiled a

database consisting of 100 images from each of the following cameras: a Canon

Powershot G7 (Cam 1), Sony Cybershot DSC-W80 (Cam 2), Sony Cybershot DSC-

V1 (Cam 3), Fuji Finepix E550 (Cam 4), and an Olympus Camedia C5060 (Cam

5). We removed evidence of prior JPEG compression from each image by adding

anti-forensic dither to its DCT coefficients, then recompressed it with the quantiza-

tion tables used by each of the other cameras in the database. After this was done,

we used the procedure developed by Fan and de Quieroz to obtain an estimate Q̂i,j

of the quantization table used to compress each image [7]. We matched each image

with a camera by selecting the camera whose quantization table Q
(k)
i,j maximized the

similarity measure

sk =
∑

i

∑

j

1(Q̂i,j, Q
(k)
i,j). (4.32)

Table 4.2 shows the results of our image origin forgery experiment. With the

exception of representing the images captured by the Sony Cybershot DSC-V1 as

originating from the Sony Cybershot DSC-W80, we were able to falsify the origin

of the images captured by each camera with a 100% success rate. In the case of the

Sony Cybershot DSC-V1, one image was linked to a different camera than the one

we intended.

113

Falsified True Image Origin

Origin Cam 1 Cam 2 Cam 3 Cam 4 Cam 5

Cam 1 - 100.0% 100.0% 100.0% 100.0%

Cam 2 100.0% - 99.0% 100.0% 100.0%

Cam 3 100.0% 100.0% - 100.0% 100.0%

Cam 4 100.0% 100.0% 100.0% - 100.0%

Cam 5 100.0% 100.0% 100.0% 100.0% -

Table 4.2: Camera origin forgery classification results.

4.7 Summary

In this chapter, we have proposed a set of anti-forensic operations capable

of removing compression fingerprints from digital images. To do this, we devel-

oped a generalized framework for the removal of quantization fingerprints from an

image’s transform coefficients. According to this framework, quantization finger-

prints can be removed from an image’s transform coefficients by first estimating the

distribution of the image’s transform coefficients before compression, then adding

anti-forensic dither to the compressed image’s transform coefficients so that their

anti-forensically modified distribution matches the estimate of their distribution be-

fore compression. We used this framework to design specific anti-forensic techniques

to remove DCT coefficient quantization artifacts from JPEG compressed images and

DWT coefficient compression artifacts from images compressed using wavelet-based

coders. Additionally, we have proposed an anti-forensic technique capable of re-

114

moving statistical traces of blocking artifacts from images that undergo blockwise

segmentation during compresion.

To demonstrate the performance of our algorithms, we have conducted a num-

ber of experiments on JPEG and SPIHT compressed images in which we show that

by adding anti-forensic dither to an image’s transform coefficients, we can render

that image’s transform coefficient compression fingerprints forensically undetectable

without significantly degrading the image’s visual quality. We have conducted an ex-

periment showing that our anti-forensic deblocking technique can remove statistical

traces of blocking artifacts from images while several existing deblocking techniques

cannot. Additinally, we have shown that our proposed anti-forensic techniques can

be used to make certain types of image tampering such as double JPEG compres-

sion, cut-and-paste image forgery, and image origin falsification undetectable to

compression history based forensic techniques.

115

Chapter 5

Temporal Forensics and Anti-Forensics for Digital Video

Just as digital editing operations leave behind fingerprints, anti-forensic opera-

tions may inadvertently leave behind their own fingerprints [49]. If these fingerprints

can be identified, forensic techniques can be designed to detect them. This will allow

forensic investigators to identify digital forgeries even when editing fingerprints have

been anti-forensically removed. Researchers have recently developed techniques to

identify anti-forensic manipulation of an image’s PRNU [13] and compression his-

tory [54].

When confronted with a forensic technique capable of detecting the use of an

anti-forensic operation, intelligent forgers will attempt to modify their anti-forensic

operation in order to minimize the strength of the fingerprint it leaves behind. This

leads to a cat-and-mouse game between a digital forger and a forensic investigator.

Furthermore, a digital forger can opt not to completely anti-forensically remove all

editing fingerprints left in the forgery. Instead, the forger may decrease the strength

of the anti-forensic operation so that it reduces the strength of the editing operations

fingerprint to just below a forensic investigator’s detection threshold. This will

correspondingly reduce the strength of the anti-forensic operations fingerprint, thus

helping the attacker avoid detection. The forensic investigator, meanwhile, must

ensure that the combination of the false alarm rates from techniques to detect editing

116

and the use of anti-forensics is below a constant false alarm rate.

This interplay between a forensic investigator and a digital forger raises a

number of important questions. For example, if a forensic technique is effective

at detecting a particular type of forgery but can easily be fooled if a forger makes

use of anti-forensics, is it a good or bad detection algorithm? Similarly, if an anti-

forensic operation is able to successfully remove fingerprints left by a particular

forgery operation but introduces new fingerprints of its own, how do we evaluate

its effectiveness? What is the optimal strategy for a forger to use to avoid forensic

detection of both their forgery and their use of anti-forensics? What is the optimal

detection strategy for a forensic investigator to follow when attempting to identify

digital forgeries? Should decision thresholds in forensic detection techniques be

chosen to yield the best performance under a worst case scenario, or can knowledge

of the attacker’s actions be used to improve detection results? Are there certain

editing operations that an attacker will be unable to hide both evidence of their

manipulation and evidence of their use of anti-forensics?

To address these questions, we analyze the interaction between a digital forger

and a forensic investigator in a particular forensic scenario. In this chapter, we con-

sider the problem of forensically detecting video frame deletion or addition. Frame

deletion may be performed by a video forger who wishes to remove certain portions

of a video sequence, such as a person’s presence in a surveillance video. Similarly, a

forger may wish to falsify an event by inserting a sequence of new frames into a video

segment. In previous work, Wang and Farid demonstrated that frame deletion or

addition followed by recompression introduces a forensically detectable fingerprint

117

into MPEG video [55]. Though their detection technique is quite effective, it re-

quires human identification of frame deletion or addition fingerprints and can only

be used on videos compressed by a certain class of video encoders that employ a

fixed group of picture (GOP) structure.

In this chapter, we propose new video frame deletion or addition forensic and

anti-forensic techniques along with a new framework for evaluating the interplay

between a forger and forensic investigator [42]. The main contributions of this work

can be summarized as follows:

• We propose a mathematical model of video frame deletion and addition fin-

gerprints that show themselves in a video’s P-frame prediction error sequence.

• We use this model to develop two new automatic video frame deletion or

addition detection technique. One of these techniques is targeted towards

video codecs that use fixed length GOPs when compressing a video, while the

other is suitable for use with newer compression standards that allow the GOP

length to change adaptively.

• We propose an anti-forensic technique capable of hiding frame deletion or addi-

tion fingerprints in digital videos. This technique operates by first constructing

a target P-frame prediction error sequence that is free from fingerprints, then

selectively altering the video’s predicted frames so that the prediction error

sequence from the anti-forensically modified video matches the target one.

• We identify a new fingerprint that frame deletion or addition anti-forensics in-

troduces into a modified video’s motion vectors and propose a forensic scheme

118

designed to detect it. Additionally, we modify our proposed anti-forensic tech-

nique to minimize detection by these means.

• We define a new set of terms to use when evaluating the performance of both

forensic and anti-forensic algorithms.

• We propose a set of game theoretic techniques to study the dynamics between

a digital forger and a forensic investigator. We do this by formulating each

party’s utility functions in terms of the probabilistic quantities associated with

the performance of their forensic detection technique or anti-forensic operation.

• We use our new techniques to evaluate the forensic and anti-forensic algorithms

proposed in this chapter.

The remainder of this chapter is organized as follows. In Section 5.1 we pro-

vide an overview of the background material relevant to frame deletion and addition

fingerprints, and develop our mathematical model of these fingerprints. In Section

5.2, we use this model to construct a set of automatic frame deletion or addition

detection techniques. We propose our anti-forensic technique to remove frame dele-

tion and addition fingerprints in Section 5.3. We then identify the new fingerprints

left by this anti-forensic technique, use these fingerprints to develop an algorithm to

detect the use of anti-forensics, and modify our proposed anti-forensic technique in

response to this in Section 5.4. We discuss the performance evaluation of forensics

and anti-forensic algorithms in Section 5.5 and develop our game theoretic tech-

niques to evaluate the dynamics between a forger and forensic investigator. We

present the results of several experiments designed to evaluate the performance of

119

each of our proposed techniques in Section 5.6. Finally, we summarize this chapter

in Section 5.7.

5.1 Frame Deletion Fingerprints

We begin this section with a brief overview of video compression, with an

emphasis on the forensically significant aspects. Next, we discuss prior forensic work

on video frame deletion or addition detection. We then propose a new mathematical

model of frame deletion and addition fingerprints which we will use to develop our

forensic and anti-forensic techniques.

5.1.1 Video Compression Overview

Due to the size of uncompressed digital video files, virtually all digital video

undergoes compression during storage or transmission. Though a variety of different

video compression techniques exist, the majority operate in the same basic manner.

Since a scene typically changes very little over a short period of time, a great deal

of redundancy exists between video frames. Video encoders exploit this redundancy

by predicting certain frames from others, then storing the prediction error. The

prediction error can be compressed at a higher rate than the frame itself, allowing

for smaller file sizes.

In order to prevent the propagation of channel and decoding errors, not all

frames are predicted. Instead, the video sequence is segmented into sets of frames

known as ‘groups of pictures’ (GOPs). Frames are predicted from other frames in

120

the same GOP, but prediction does not occur across GOPs. Within each GOP,

frames are assigned one of three types according to the manner in which they are

predicted and compressed. These frame types are known as: intra-frames (I-frames),

predicted-frames (P-frames), and bidirectional-frames (B-frames).

Each GOP begins with an I-frame. I-frames are not predicted from any other

frame and are independently encoded. In video compression standards such as

MPEG-1 and MPEG-2, I-frames are encoded using a lossy process nearly identical

to JPEG compression. The remainder of each GOP consists of P-frames and B-

frames. These frames are predictively encoded using processes known as motion

estimation and compensation. A predicted version of the encoded frame is formed

from segments of an anchor frame or frames. Only I-frames and P-frames may act

as anchor frames.

In MPEG-1 and 2, P-frame motion estimation is performed by first segment-

ing the frame into 16 × 16 pixel macroblocks. Next, the preceding anchor frame

is searched for the macroblock that best matches each macroblock in the current

P-frame. The row and column displacements between each macroblock in a P-frame

and its match in the anchor frame are recorded as that macroblock’s row and column

motion vectors. A motion-compensated, predicted version of the P-frame is formed

by assembling each of the matching macroblocks from the anchor frame. The pre-

dicted frame is then subtracted from the actual P-frame, resulting in the P-frame’s

prediction error. This prediction error is compressed using the same JPEG-like

process used to encode I-frames.

During storage and transmission, only the motion vectors and prediction errors

121

are retained. To decompress these frames, the predicted version of the P-frame

is reformed using its motion vectors and the previous anchor frame, which must

be decoded first. Next, the prediction error is decompressed and added to the

predicted frame, thus reconstructing the frame. B-frames are encoded in a similar

manner, however each macroblock frame can be predicted from the anchor frame

that immediately precedes the B-frame, immediately follows the B-frame, or an

average of these two predictions can be used.

In MPEG-1, MPEG-2, and similar codecs, the structure of each GOP is fixed,

i.e. the sequence of I-, P-, and B-frames always occurs in the same pattern. Newer

video compression standards such as MPEG-4 and H.264 allow for the GOP struc-

ture to be adjusted depending on the amount of motion in the scene. For example,

rapidly changing scenes can be encoded using shorter GOPs because the accuracy

of motion compensation greatly decreases as new objects enter each frame.

5.1.2 Detection of Frame Deletion or Addition

In a number of scenarios, a video forger may wish to add or delete frames

from a digital video sequence. To do this, the forger must decompress the video

before frames are added or deleted, then recompress the video after it has been

altered. Previous work by Wang and Farid has shown that recompression of MPEG

video using a fixed GOP structure results in two distinct, forensically detectable

fingerprints; one spatial and the other temporal [55]. The spatial fingerprint can be

observed within a single MPEG I-frame and is similar in nature to the fingerprint

122

Figure 5.1: Illustration of the effects of frame deletion on a video frame sequence. The original

video sequence is shown along the top of this figure and the altered video sequence is shown along

the bottom. Each GOP in the altered video contains frames from two different GOPs in the

unaltered video sequence.

left by double JPEG compression [32, 33]. This fingerprint occurs when either no

frames are added or deleted, or when the number of frames added or deleted is an

integer multiple of the fixed GOP length. The temporal fingerprint occurs in the

sequence of P-frame prediction errors and occurs only if frames have been added to

or deleted from the video sequence prior to recompression.

When frames are deleted from or added to a digital video, each GOP in the

recompressed video will contain frames that belonged to different GOPs during the

initial compression. This effect can be seen in Fig. 5.1, which shows an example of

frame deletion for a video compressed using a fixed GOP sequence. Wang and Farid

experimentally demonstrated that when a P-frame is predicted from an anchor frame

that initially belonged to a different GOP, an increase in the total prediction error

is observed [55]. Furthermore, they demonstrated that if a fixed GOP structure is

used, this increase in prediction error occurs periodically in the sequence of P-frame

123

prediction errors. As a result, they proposed detecting frame deletion or addition

by visually inspecting the sequence

e(n) =
1

Nxy

∑

x

∑

y

|px,y(n)|, (5.1)

for a periodic fingerprint, where Nxy is the number of pixels in each frame and px,y(n)

is the prediction error of the nth P-frame at pixel location (x, y) [55]. Alternately,

the discrete Fourier transform (DFT) of this sequence E(k) = DFT{e(n)} can

be inspected for peaks resulting from the periodic fingerprint. An example of this

fingerprint can be seen in Fig. 5.2 which shows the P-frame prediction error sequence

of 250 frames of an MPEG-1 compressed version of the commonly used ‘Carphone’

video, along with the P-frame prediction error sequence of the same video after the

first 6 frames have been deleted followed by recompression.

While this frame addition or deletion detection technique is quite successful,

it possesses several shortcomings. Because it requires human inspection of the P-

frame prediction error sequence or its DFT, Wang and Farid’s detection technique

can not be run automatically on large amounts of data and is subject to human error.

Furthermore, its reliance on human inspection makes it difficult to characterize the

performance of this detection technique using a receiver operating characteristic

(ROC) curve or other statistical measure. Most importantly, because this detector

relies on identifying periodic increases within the P-frame prediction error sequence,

it can only be used on videos that are compressed by a codec with a fixed GOP

pattern. It cannot be used on videos compressed using more recently developed

encoders such as MPEG-4 or H.264 if their implementations adaptively change the

124

0 10 20 30 40 50 59
0

2

4

6

8

10

n

e(
n)

0 10 20 30 40 50 59
0

2

4

6

8

10

n
e(

n)

−pi −pi/2 0 pi/2 pi
0

k

|E
(k

)|

−pi −pi/2 0 pi/2 pi
0

k

|E
(k

)|

Figure 5.2: P-frame prediction error sequence (top left) and the magnitude of its DFT (bottom

left) obtained from an unedited, MPEG compressed version of the ‘Carphone’ video sequence along

with the P-frame prediction error sequence (top right) and the magnitude of its DFT (bottom right)

obtained from the same video after frame deletion followed by recompression.

125

GOP length. This is because the increase in the P-frame prediction error will not

occur periodically unless a fixed GOP pattern is used.

5.1.3 Temporal Fingerprint Model

In order to design an automatic frame deletion or addition detection technique

as well as an anti-forensic method to remove frame addition and deletion fingerprints,

we have developed a model of the effect of frame deletion or addition followed

by recompression on a video’s P-frame prediction error sequence. To simplify our

discussion, we will consider only frame deletion for the remainder of this paper. Each

of the equations and techniques presented hereafter can be modified to accomodate

frame addition by viewing it as the deletion of a negative number of frames.

Let e1(n) denote the P-frame prediction error sequence of an unaltered video

that has been compressed once and let e2(n) denote the prediction error sequence of

that same video after nD frames have been deleted followed by recompression. We

model the relationship between the altered and unaltered videos’ P-frame prediction

error sequences using the equation

e2(n) = e1(n− nD)(1 + s(n)). (5.2)

In this equation, the signal s(n) denotes the temporal fingerprint caused by frame

deletion. We propose two different models of the temporal fingerprint based on

whether the video codec used to perform compression employed a fixed length GOP

or an adaptively changing one.

126

5.1.3.1 Model for Fixed Length GOPs

As was discussed previously, Wang and Farid demonstrated that when using

a video codec with a fixed GOP structure frame deletion followed by recompression

introduces a periodic trace into a video’s P-frame prediction error sequence. Natu-

rally, this leads us to model s(n) in this situation as a periodic signal. The temporal

fingerprint’s periodicity arises because frame deletion causes a constant shift in the

position of each GOP used during the initial compression relative to the locations

of the GOPs used during recompression. As a result, each new GOP will contain

frames from exactly two GOPs present during the initial application of compres-

sion in a repetitive fashion. Using this information and defining T as the period

of the temporal fingerprint, we can show that the temporal fingerprint exhibits the

following three properties [47]:

Property 1: The temporal fingerprint’s repetitive pattern corresponds to a

disproportionate increase in e(n) exactly once per fingerprint period.

Property 2: The period T of the temporal fingerprint is equal to the number

of P-frames within a GOP.

Property 3: Define the phase φ of the temporal fingerprint as the number of

P-frames within a GOP before the increase in e(n) due to frame deletion. The phase

is determined by the equation φ = ⌊|A|/nP ⌋, where nP is the number of P-frames

within a GOP, A is the set of frames at the beginning of each GOP that belonged

to the same GOP during the initial application of compression, |A| denotes the

cardinality of A, and ⌊·⌋ denotes the floor operation.

127

To justify these properties, we note that increases in the P-frame prediction er-

ror sequence due to the temporal fingerprint occur when a P-frame is predicted from

an anchor frame that belonged to a different GOP during the initial compression.

Since each new GOP is comprised of frames from only two GOPs used during the

initial application of compression, a P-frame will only be predicted in this manner

once per GOP. This justifies the first property. The second property arises because

the sequence e(n) consists only of P-frame prediction errors, thus spikes in e(n) due

to the temporal fingerprint will be separated by the number of P-frames in a GOP.

The third property follows directly from the first two properties. We note that by

defining nG as the number of frames in a GOP and nF as the number of frames

in the video sequence that precede the deleted frames, |A| is given by the equation

|A| = nG − ((nD + nF) mod nG).

Based on these properties, we model the temporal fingerprint as

s(n) = β 1((n− φ) mod T = 0), (5.3)

where β > 0 and 1(·) denotes the indicator function. This corresponds to modeling

the P-frame prediction error sequence of an altered video as a shifted version of

the unaltered video’s prediction error sequence that is scaled by (1 + β) once per

fingerprint period.

5.1.3.2 Model for Variable Length GOPs

Newer video compression standards such as MPEG-4 or H.264 allow the GOP

length to vary based on the amount of motion in a scene. When frames are deleted

128

from a video then recompressed using one of these codecs, GOPs in the recompressed

video will be comprised of frames belonging to multiple different GOPs used during

the first compression, but this will not occur in a repeating pattern. Some new GOPs

may contain frames from more than two GOPs used during the original compression,

while others will contain frames from only one. Nonetheless, frame deletion will alter

the GOP which each frame belongs to, but in a random fashion rather than a fixed

one. As a result, spikes in the P-frame prediction error sequence occur in a random

fashion.

To capture this behavior, we model the P-frame prediction error sequence of

a video compressed using variable GOP lengths as

s(n) = β 1(Θ(n) = 0), (5.4)

where β > 0 is a constant and Θ(n) is a random variable distributed over the set

{0, 1}. Using this model corresponds to modeling the prediction error sequence of an

altered video as a shifted version of the altered version’s prediction error sequence

with randomly selected values scaled by (1 + β).

5.2 Detecting Frame Deletion

To address the weaknesses in Wang and Farid’s detection technique, we pro-

pose two automatic frame deletion or addition detection techniques; one which

exploits the periodic nature of frame deletion fingerprints for fixed GOP length

encoders and another suitable for use on videos compressed using variable GOP

lengths. We develop these techniques in this section by posing frame deletion de-

129

tection as a hypothesis testing scenario. We keep the convention that e(n) is the

observed P-frame prediction error sequence associated with a video in question,

e1(n) is the prediction error sequence of that video before frames have been deleted,

and e2(n) is the prediction error sequence of the video after frames have been deleted

followed by recompression.

Using the convention that the null hypothesis corresponds to the video being

unaltered, along with our model from Section 5.1.3, detecting frame deletion can be

viewed as differentiating between the following two hypotheses:

H0 : e(n) = e1(n),

H1 : e(n) = e2(n) = e1(n) + s(n)e1(n).

(5.5)

It is clear from this problem formulation that detecting frame deletion is equiv-

alent to detecting the presence of the term s(n)e1(n). In order to do this, however,

we require some knowledge of what the P-frame prediction error sequence of the

unaltered video is. We obtain an estimate of this signal by median filtering the

observed prediction error sequence according to the formula

ê(n) = median{e(n− 1), e(n), e(n+ 1)}. (5.6)

This estimate has the property that it removes the impulsive spikes in prediction

error corresponding to frame deletion fingerprints, while leaving the prediction error

sequence of an unaltered video largely intact. We model the relationship between

this estimate and the true value of e1(n) as

e1(n) = ê(n) + ǫ(n), (5.7)

where ǫ(n) is a zero mean random variable representing estimation error.

130

Using this estimate of the unaltered video’s P-frame prediction error sequence,

we calculate ŝ(n), an estimate of the fingerprint signal modulated by the prediction

error sequence according to the equation

ŝ(n) = max(e(n)− ê(n), 0). (5.8)

If the frame deletion fingerprint is present, ŝ(n) will be composed of the modulated

fingerprint signal e1(n)s(n) plus the noise term ǫ. We take the maximum of the

difference between e(n) and ê(n) and zero because we know that the term e(n)s(n)

is nonnegative.

Now we can reframe our detection problem as differentiating between the fol-

lowing two hypotheses:

H0 : ŝ(n) = max(ǫ(n), 0),

H1 : ŝ(n) = max(s(n)e1(n) + ǫ(n), 0).

(5.9)

This is equivalent to detecting the presence of the modulated frame deletion finger-

print signal e1(n)s(n) in noise.

If the video codec used to perform compression uses a fixed GOP structure, we

are able to leverage the periodic nature of s(n) when performing detection. Because

the number of P-frames in one GOP can be determined from the encoded video, the

detector can assume knowledge of the fingerprint’s period. The phase, however, is

unknown to the detector because it depends on information (the number of frames

deleted and the point in the video sequence at which frame deletion occurs) that

is hidden from the forensic investigator. As a result, fingerprint detection is well

suited for the frequency domain, where the presence of a periodic signal can be

131

readily determined without requiring information about its phase.

To perform frame deletion detection when the video codec uses a fixed GOP

structure, we first calculate Ŝ(k) = |DFT{ŝ(n)}|, the magnitude of the DFT of

the video in question’s P-frame prediction error sequence. For a prediction error

sequence N frames long, a peak will occur in Ŝ(k) at k∗ = N/T if frame deletion

fingerprints are present. We measure the strength of this peak using the detection

statistic ρ, defined as

ρ =
Ŝ(k∗)

∑

k∈Ωw(k)Ŝ(k)
(5.10)

where w(k) = ce−λ(k−k∗)2 and Ω = {k|k ≤ N/2, k 6= 1, k∗}. The function w(k) is

used to weight Ŝ(k) values closer to k∗ more than those further away. The variable

c is a normalizing constant chosen such that
∑

k∈Ωw(k) = 1.

We have observed that for videos with very low average prediction error levels,

the total prediction error for P-frames predicted from I-frames is slightly more than

for P-frames predicted from other P-frames. By requiring videos with very low

average prediction error powers to exhibit stronger periodic fingerprints as evidence

of frame deletion, we are able to reduce the number of false alarms. We detect frame

deletion using the following decision rule:

δfixed =















H0 if ρeγeavg < τfixed

H1 if ρeγeavg ≥ τfixed,

(5.11)

where τfixed is a decision threshold, γ is a scalar constant, and eavg is the average of

the prediction error sequence e(n).

If the video is compressed using a newer video compression standard that uses

variable GOP lengths, the frame deletion fingerprint will not be periodic. In this

132

case, frame deletion detection is equivalent to detecting an unknown signal in the

presence of noise. As a result, we use an energy detector to identify the presence of

s(n). This yields the following decision rule

δvar =















H0 if 1
N

∑N
n=1 |ŝ(n)| < τvar

H1 if 1
N

∑N
n=1 |ŝ(n)| ≥ τvar.

(5.12)

where τvar is a decision threshold. While the periodicity based decision rule δfixed

cannot be used on videos compressed with variable GOP lengths, the energy detector

based decision rule δvar can be used on any video.

5.3 Frame Deletion Anti-Forensics

To undetectably delete a sequence of frames from a digital video, a forger

must remove frame deletion fingerprints from the video’s P-frame prediction error

sequence. The forger is constrained, however, in how they accomplish this. Any anti-

forensic technique designed to accomplish this must not introduce an unacceptable

amount of distortion into the anti-forensically modified video. Furthermore, the

anti-forensically modified video must be decodable by standard video decoders.

In order to develop an anti-forensic technique to remove frame deletion finger-

prints, let us first examine how a video’s prediction error sequence can be manipu-

lated. Each frame’s prediction error is dependent on the accuracy of the predicted

version of that frame. Normally, video encoders attempt to create highly accurate

predictions of each frame so that the total prediction error is minimized. This re-

duces the size of the compressed video file. If a less accurate prediction technique is

133

used, the total prediction error for a frame increases. In fact, any total prediction

error value associated with a valid frame prediction is achievable. This implies that

the total prediction error for a frame can be increased by purposefully choosing

motion vectors that yield a poor predicted frame. We note that doing this does not

introduce new distortion into the video since each frame can still be recovered by

reconstructing its predicted version from the set of encoded motion vectors, then

adding the prediction error to the predicted frame.

Using this information, we propose an anti-forensic technique that operates

roughly as follows. First, we construct a target P-frame prediction error sequence

ẽ(n) that is free from frame deletion fingerprints. Next, we increase the prediction

error for each P-frame until the target prediction error is reached. We do this by

selectively setting the motion vectors for certain macroblocks to zero, then recalcu-

lating the prediction error associated with that macroblock. By modifying the video

in this way, we are able to meet both of the previously mentioned criteria imposed

upon the anti-forensic technique.

When constructing the target prediction error sequence, we must ensure that

it is achievable. Since we can only increase the prediction error, this implies that

ẽ(n) ≥ e2(n). Nonetheless, we still wish to keep the prediction error as small as

is reasonably possible. With this in mind, we construct our target prediction error

sequence by setting ẽ(n) = e2(n) for values of n for which e2(n) = (1 + β)e1(n). If

the encoder used to compress the video employs a fixed GOP structure, this will

correspond to n values such that (n− φ) mod T = 0. Otherwise, these n values can

be identified by comparing the GOP sequence of the unaltered video to the GOP

134

sequence used during recompression. We determine the remaining values of ẽ(n)

by interpolating them using a cubic spline. This ensures that no frame deletion

fingerprints will occur in the target P-frame prediction error sequence.

After we have generated the target prediction error sequence, we must modify

the motion vectors and prediction errors of each P-frame so that the actual P-frame

prediction error matches the target error. Since we chose ẽ(n) = e2(n) for values

of n where e2(n) = (1 + β)e1(n), we do not need to modify these P-frames. For

the remaining P-frames, we determine the increase in the prediction error incurred

by each macroblock if its motion vectors are set to zero. We then zero out the

motion vectors of the macroblocks whose prediction error increases the least until

the target prediction error level is reached. An explicit description of this procedure

is provided below.

Let bi,j(n) denote of sum of the absolute value of the prediction error in the

macroblock at location (i, j) in the nth P-frame when motion prediction is used

and let b̂i,j(n) be the sum of the absolute value of the prediction error in the same

location when the macroblock’s motion vector has been set to zero. We define the

increase in the macroblock’s prediction error caused by setting its motion vector to

zero as

qi,j(n) = b̂i,j(n)− bi,j(n). (5.13)

We note that qi,j(n) ≥ 0 because the zero motion vector is included in the search

space for the optimal motion vector during compression.

Next, we define Q(l)(n) as the set of indices of the macroblocks that result in

135

the l smallest prediction error increases when their motion vectors are set to zero.

More explicitly, Q(l)(n) is defined as

Q(l)(n) =
{

(i, j)|qi,j(n) ≤ q(l)(n)
}

, (5.14)

where q(l)(n) is the lth smallest entry of q(n).

The total absolute prediction error gn(l) in the nth frame that results from

setting the motion vectors of each macroblock whose indices are in Q(l)(n) to zero

is given by the equation

gn(l) =
∑

(i,j)∈Q(l)(n)

b̂i,j(n) +
∑

(i,j)/∈Q(l)(n)

bi,j(n). (5.15)

The value of l that minimizes the absolute distance between the target prediction

error level and the actual prediction error level is

l∗ = argmin
l

|gn(l)− ê(n)|. (5.16)

To remove the temporal fingerprint from the nth P-frame of the recompressed video,

we set the motion vectors of each macroblock whose indices are in Q(l∗)(n) to zero,

then recompute the prediction error at these macroblock locations during recom-

pression. Due to the relatively small number of macroblocks in each frame, we find

l∗ for each frame through an exhaustive search.

In some instances, the target prediction error value for a particular P-frame is

greater than the error incurred by setting all of the frame’s motion vectors to zero.

If this is the case, we search first for the set of motion vectors that maximize the

prediction error associated with each macroblock. Because many decoders place a

limit on the maximal length of each motion vector, this search must be conducted

136

over the set of allowable motion vectors for a given codec. We increase the frame’s

prediction error by changing several of its motion vectors to these new, maximal

error motion vectors rather than by setting them to zero. The rest of our anti-

forensic technique remains the same.

5.4 Detecting the Use of Frame Deletion Anti-Forensics

In the introduction to this paper, we discussed the possibility that anti-forensic

operations may leave behind new fingerprints of their own. In this section, we show

that this is true for the case of frame deletion and addition anti-forensics.

In order to remove frame deletion fingerprints from the P-frame prediction

sequence of a video, that video’s motion vectors must be altered in order to increase

the prediction error. Despite this, the true motion present in the video does not

change. As a result, there is a discrepancy between many of the motion vectors

stored in an anti-forensically modified video and the true motion of that video

scene. This is not the case for an unaltered video because normal video encoders

will attempt to estimate scene motion as accurately as possible in order to minimize

each frame’s prediction error. Accordingly, these discrepancies between a video’s

stored motion vectors and the actual motion of the scene are fingerprints left by

frame deletion anti-forensics.

To detect the use of frame deletion anti-forensics, we propose comparing a

compressed video’s P-frame motion vectors to an estimate of the true motion present

in the video scene. We accomplish this by first decompressing the video in question,

137

then performing motion estimation on the video to obtain a new set of row and

column motion vectors. When estimating the true motion of the video, we use an

exhaustive search to determine each motion vector. We note that care must be

taken to ensure that each frame is predicted from the same anchor frame used by

the compressed video.

Let ru,v(n) and cu,v(n) denote the stored row and column motion vectors at

macroblock location (u, v) in the nth P-frame of a compressed video whose authen-

ticity is questioned. Similarly, let r̂u,v(n) and ĉu,v(n) denote the row and column

motion vectors estimated from the decompressed video. We compute the mean

squared Euclidean distance d between the stored and estimated motion vectors at

each frame as

d(n) =
1

UV

U
∑

u=1

V
∑

v=1

(ru,v(n)− r̂u,v(n))
2 + (cu,v(n)− ĉu,v(n))

2, (5.17)

where U and V are the number of row and column macroblocks in each video frame.

Since not every frame requires anti-forensic modification to raise its error level

to the anti-forensic target level, some frames will have distinctly larger d(n) values

than others. As a result, a signal similar to the fingerprint signal s(n) occurs in d(n)

for anti-forensically modified videos. We exploit this information by measuring the

strength of this periodic signal as dfreq = D(k∗) where D(k) = DFT{d(n)}, and

k∗ = N/T as defined in Section 5.2. Additionally we obtain a measure dmean =

1
n

∑N
n=1 d(n) of the mean d(n) value. We combine both of these features into a

feature vector d = [dmean dfreq], then use prinicpal component analysis to reduce its

dimensionality to a one dimensional feature dα.

138

Framing the detection of frame deletion anti-forensics as a hypothesis testing

problem, we adopt the convention that the null hypothesis (H0) is that the video

has not undergone anti-forensic modification and the alternative hypothesis (H1)

is that the video has been anti-forensically modified. We detect the use of frame

deletion anti-forensics using the following decision rule:

δmv =















H0 if dα < τmv

H1 if dα ≥ τmv,

(5.18)

where τmv is the decision threshold.

If a forensic investigator is aware of the possibility that anti-forensics have been

used, we must assume that a digital forger will be aware of techniques designed to

detect their use of anti-forensics. Since we detect the use of frame deletion anti-

forensics by analyzing a video’s motion vectors, an intelligent forger will modify

the anti-forensic algorithm in an attempt to minimize the mean squared Euclidean

distance between the anti-forensically modified motion vectors and the true scene

motion.

Because the mean squared Euclidean distance is used to compare a video’s

motion vectors to an estimate of its true motion, large differences between the anti-

forensically modified motion vectors will be penalized more than small differences.

This is reasonable because while small errors might realistically occur during motion

estimation, large motion estimation errors are far less likely. Naively setting the

motion vectors of several macroblocks to zero has the potential to create sizable

disparities between these motion vectors and the macroblock’s true motion. If the

target prediction error can be achieved by introducing small changes to a large set of

139

motion vectors rather than large changes to a small set, the mean squared Euclidean

distance between the anti-forensically modified motion vectors and the true motion

will be reduced. This will correspondingly decrease the probability that the use of

anti-forensics is detected. In light of this, we perform the following modifications to

our proposed anti-forensic technique.

Rather than increasing a P-frame’s prediction error by setting several of its

motion vectors to zero, we instead fix a search radius with an initial value of one

pixel around each true motion vector. We then search the set of motion vectors

lying inside these search radii for the set of motion vectors that maximize the total

prediction error. If the target prediction error is not achievable using motion vectors

within the current search radius, the search radius is incremented by one pixel and

the search is repeated. This process is iterated until the target prediction error is

achievable at a particular search radius.

Once the appropriate radius is determined, the new anti-forensic motion vec-

tors and prediction errors are determined using a process similar to that propose

in Section 5.3. The only modification required is that we change b̂i,j(n) to be the

sum of the absolute value of a macroblock’s prediction error when that macroblock’s

motion vectors are anti-forensically obtained using the final search radius. Similarly,

we change bi,j(n) to the macroblock’s total prediction error when the macroblock’s

motion vectors are anti-forensically determined using the final search radius minus

one.

140

5.5 Performance Analysis and Tradeoff

While digital forensic techniques have been studied for roughly a decade, anti-

forensic techniques are relatively new. Presently, few tools exist to evaluate the

performance of anti-forensic techniques. Still fewer tools exist to understand the

optimal set of actions of a forensic investigator and forger when the forger’s use

of anti-forensics can be detected. In this section, we propose new techniques for

evaluating the performance of an anti-forensic operation. Additionally, we propose a

game theoretic framework for analyzing the interplay between a forensic investigator

and a forger [41].

5.5.1 Evaluating the Performance of Anti-Forensic Techniques

Let ψ be a digital multimedia file and m(·) be an editing operation capable of

manipulating ψ. In order to verify the authenticity of ψ, a forensic investigator will

attempt to determine if ψ is actually a manipulated version of another, unaltered

digital multimedia file ψ′. This forensic manipulation detection problem can be

formulated as differentiating between the following two hypotheses:

H0 : ψ 6= m(ψ′),

H1 : ψ = m(ψ′).

(5.19)

To identify the correct hypothesis, the forensic investigator will employ a detection

algorithm δm designed to detect the use of m by measuring the strength of its

fingerprints in ψ. Typically, this is done by calculating a detection statistic and

comparing it to a decision threshold. The decision threshold is chosen to maximize

141

the detection algorithm’s probability of detection, defined as Pd(δm) = P (δm =

H1|ψ = m(ψ′)), without violating a constraint on its probability of false alarm,

defined as Pfa(δm) = P (δm = H1|ψ 6= m(ψ′)). We adopt the convention that

δ
(Pfa)
m specifies the detection algorithm δm operating using the decision threshold

associated with the false alarm rate Pfa .

Once a detection technique has been established, a digital forger can create

an anti-forensic technique αm designed to fool δm . In the past, the performance of

an anti-forensic technique has often been measured by the probability that δm will

identify a multimedia file as unaltered when it has actually been edited using m

then anti-forensically manipulated using αm , i.e. P (δm(αm(ψ)) = H0|ψ = m(ψ′)).

This measure is biased, however, because a file altered using m will not be identified

as manipulated with probability 1 − Pd even if anti-forensics are not used. As a

result, this measure unfairly credits a number of missed detections to the effects of

anti-forensics, thus overestimating the performance of αm.

Instead, the performance of an anti-forensic technique should be measured in

terms of its anti-forensic effectiveness, or its ability to cause the missed detection of

an altered multimedia file given that the manipulation is detectable if anti-forensics

are not used. As a result, we define the probability of anti-forensic effectiveness of

αm as

Pae(αm) = P (δm(αm(ψ)) = H0| δm(ψ) = H1, ψ = m(ψ′)). (5.20)

It is important to note, however, that an anti-forensic operation need not achieve

a Pae = 1 in order to render δm ineffective. In fact, αm only needs to cause δm to

142

Figure 5.3: Example relating the anti-forensic effectiveness of an anti-forensic operation to the

ROC curves achieved by a forensic technique when anti-forensics is and is not used. The anti-

forensic effectiveness at a given false alarm level is the ratio A/B.

miss a sufficient number of detections for its performance to become equivalent to

making a random decision, or in other words Pd(δ
(Pfa)
m) = Pfa . In light of this, it

is important to measure the degree to which a forensic technique is susceptible to

an anti-forensic attack. As a result, we define the anti-forensic susceptibility of a

forensic detection technique δm operating with a false alarm constraint of Pfa to an

anti-forensic attack αm as

Sα(δm ,Pfa) =
Pd(δ

(Pfa)
m)−max(Pd(δ

(Pfa)
m)(1− Pae(αm)),Pfa)

Pd(δ
(Pfa)
m)− Pfa

. (5.21)

At a particular false alarm level, the numerator of Sα is the difference between

the probability that δm will detect manipulation if anti-forensics is not used and

the probability that δm will detect manipulation if anti-forensics is used to disguise

manipulation fingerprints. More explicitly, it is the decrease in the performance of δm

due to the use of αm , as shown by the distance A in Fig. 5.3. When computing this

distance, we take the maximum between probability that δm will detect manipulation

143

if anti-forensics is used, i.e. Pd(δ
(Pfa)
m)(1−Pae(αm)), and the probability of false alarm

because the forensic investigator can always achieve Pd = Pfa by randomly deciding

that a multimedia file is manipulated with probability Pfa . Any decrease in the

performance of δm beyond this point is unnecessary to render δm ineffective.

To normalize Sα, its denominator is the difference between the probability of

detection achieved by δ
(Pfa)
m and its corresponding false alarm rate. This difference,

which corresponds to the distance B shown in Fig. 5.3, is the maximum decrease in

the performance of the forensic detection technique that an anti-forensic attack can

cause. As a result, the anti-forensic susceptibility is a measure between 0 and 1 of

the decrease in the effectiveness of δm caused by αm . An anti-forensic susceptibility

of one indicates that αm is able to cause δm to perform no better than a random

decision, while an anti-forensic susceptibility of zero signifies that αm is unable to

cause any reduction in the performance of δm . We note that Sα is undefined for

Pfa = 1 because under this condition, no anti-forensic technique is able to cause any

reduction in the performance of the forensic detector (it will always decide that the

file has been manipulated).

5.5.2 Analysis the Interplay Between a Forger and Forensic Investi-

gator Using Game Theory

In many instances, an anti-forensic operation will leave behind forensically

detectable fingerprints of its own. If this is the case, a new forensic detection tech-

nique δα can be designed to detect the use of αm . Under this scenario, the forensic

144

detector must determine whether a digital multimedia file is a manipulated and

anti-forensically modified version of another unaltered file or not. This problem can

be framed as a hypothesis test by defining the two hypotheses as

H0α : ψ 6= αm(m(ψ′)),

H1α : ψ = αm(m(ψ′)).

(5.22)

To avoid confusion, we rename the previous hypotheses used in the manipulation

detection scenario as H0m and H1m. By formulating the detection of anti-forensic

manipulation in this manner, the performance of δα can be measured using the

probabilities of detection and false alarm as before.

The existence of a detection technique capable of identifying the use of anti-

forensics poses a new problem for a forger: should anti-forensics be used to disguise

a forgery if the use of anti-forensics can itself be detected? A multimedia file will

be identified as forged if either manipulation or the use of anti-forensics is detected,

therefore a forger must attempt to hide evidence of both. In response, the forger

may design the anti-forensic operation in such a way that the strength with which

it is applied can be adjusted. By reducing the strength of the anti-forensic attack,

a forger decreases the strength of fingerprints left by anti-forensics and correspond-

ingly decreases the probability that the use of anti-forensics will be detected. This

is not without a cost, however, because as the strength with which anti-forensics is

applied is decreased, the strength of manipulation fingerprints remaining in a mul-

timedia file will increase. This will correspond to an increase in the probability that

manipulation will be detected. As a result, the forger must identify the strength

with which to apply the anti-forensic operation that minimizes the probability that

145

either the manipulation of the multimedia file or the use of anti-forensics will be

detected.

Additionally, some anti-forensic operations degrade the quality of the digital

multimedia file that they are used on. If this occurs, it is possible that a human

inspecting a forgery may be able to perceptually identify the forgery even if it does

not contain detectable manipulation or anti-forensic fingerprints. Alternately, a

human may not be able to determine that the multimedia file has been forged, but

the perceptual quality of the forgery may be so low that it is rendered useless. In

these cases, the forger must also take the perceptual quality of their forgery into

account when choosing the appropriate anti-forensic strength.

It is fairly obvious that the optimal anti-forensic strength for the forger to use

depends on the decision thresholds used by δm and δα. Consequently, a forensic

detector will choose the decision thresholds for both δm and δα that maximize the

probability of detecting a forgery. Typically, however, a forensic investigator is not

free to choose any set of decision thresholds because of a false alarm constraint. Since

the probabilities of false alarms associated with both δm and δα contribute to the

total probability of false alarm, the forensic detector must decide how much to allow

each detection technique to contribute to the total probability of false alarm. This

implies that the probability of false alarm allocation that maximizes the forensic

detector’s probability of detecting a forgery depends on the anti-forensic strength

used by the forger. As a result, both the forger and forensic investigator’s optimal

actions depend on the actions of their counterpart.

The dependence of the forensic investigator’s and forger’s optimal actions on

146

the actions of the other naturally leads to the following question; is there a set of

actions (i.e. anti-forensic strength and probability of false alarm allocation) for the

both the forger and forensic investigator that neither have any incentive to deviate

from? Furthermore, if this set of actions exists and both parties take these actions,

what is the probability that a forgery will be detected? To answer these questions

we use game theory to evaluate the dynamics between the forensic investigator and

the forger.

To formulate this situation as a game, we let player 1 denote the forensic

investigator and player 2 denote the forger. We adopt the convention that player

1 moves first, or in other words, the forensic investigator chooses the probabil-

ity of false alarm allocation and corresponding decision thresholds first, then al-

lows the forger to respond. Given a total probability of false alarm constraint

ξ, the set of strategies that the forensic investigator can employ is the set of

false alarm levels η ∈ [0, ξ] that can be allocated to δm . The corresponding false

alarm level η̃ allocated to δα is the maximum false alarm level such that P Tot
fa =

P
(

δ
(η)
m (ψ) = H1m

⋃

δ
(η̃)
α (ψ) = H1α|ψ 6= m(ψ′), ψ 6= αm(m(ψ′))

)

≤ ξ. Let α
(k)
m be an

anti-forensic operation operating at strength k ∈ [0, 1], where k = 1 corresponds to

using anti-forensics at full strength and k = 0 is equivalent to not using anti-forensics

at all. The set of strategies that the forger can employ is the set of anti-forensic

strengths k ∈ [0, 1].

For a particular pairing of strategies (η, k), the utility of player 1 is the prob-

147

ability that either manipulation or the use of anti-forensics will be detected, i.e.

U1(k, η) = P
(

δ(η)m (ψ) = H1m

⋃

δ(η̃)α (α(k)
m (ψ)) = H1α|ψ = m(ψ′)

)

. (5.23)

Because this corresponds to the probability that a forgery will be detected, player

1 wishes to maximize this utility. By contrast, player 2 wishes to minimize this

quantity along with some measure γ(m(ψ), α
(k)
m (m(ψ))) of the perceptual distortion

introduced into the forgery by the use of anti-forensics. As a result, the utility of

player 2 is

U2(k, η) = −U1(k, η)− γ
(

m(ψ), α(k)
m (m(ψ))

)

. (5.24)

By substituting in the appropriate expressions for the probabilistic quantities

in each utility function, we can find the Nash equilibrium strategies (η∗, k∗) that

neither player has an incentive to deviate from. In practice, however, the analyt-

ical evaluation of these utilities is often difficult or impossible. In many forensic

scenarios, no known equation exists to express the probabilistic quantities used in

each utility function. As a result, the Nash equilibria must often be sought out

numerically.

Once the Nash equilibrium strategies have been identified, we can evaluate

the probability that the forensic investigator will detect a forgery. To do this, we

simply need to evaluate U1(η
∗, k∗) because this probability is the utility of player 1.

Since the strategy of player 1 is influenced by the false alarm constraint ξ placed on

the forensic investigator, it is possible that different Nash equilibrium strategies and

different probabilities of forgery detection will be achieved at different ξ levels. By

varying ξ between 0 and 1, we can determine the probability of detecting a forgery

148

at the Nash equilibrium associated with each ξ value. Using this information, we can

construct a receiver operating characteristic (ROC) curve that displays the forensic

investigator’s ability to detect a forgery at each false alarm level if both players

act rationally. We call this ROC curve the Nash equilibrium receiver operating

characteristic (NE ROC) curve. It is this curve, rather than the individual ROC

curves of each forensic detection technique, that most accurately characterizes a

forensic investigator’s ability to detect a digital forgery.

5.6 Experiments and Results

We have conducted a series of experiments to evaluate the performance of

each of our proposed forensic and anti-forensic techniques. In order to create data

suitable for our experiments, we compiled a set of 36 standard video test sequences

in the QCIF format (i.e. a frame size of 176 × 144 pixels). A complete list of the

names of these sequences, along with information regarding where these sequences

can be downloaded, is provided in the Appendix. Because these sequences are

distributed in an unaltered and uncompressed state, we were able to completely

control each video’s processing history and ensure that no fingerprints left by other

signal processing operations affected our experimental results.

Next, we simulated MPEG-2 compression and decompression in Matlab. In

this implementation, we used a fixed twelve frame GOP structure IBBPBBPBBPBB

along with the standard MPEG-2 DCT coefficient quantization tables. During mo-

tion estimation, we determined the set of motion vectors for a predicted frame using

149

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

3 Frames Deleted
6 Frames Deleted
9 Frames Deleted
Frame Deletion
Average Performance
6 Frames Added

Figure 5.4: ROC curves for δfixed obtained by testing against different amounts frame deletion

and addition.

an exhaustive search. We then compressed the first 250 frames of each uncom-

pressed video sequence, creating a database of unaltered videos compressed using a

fixed GOP length.

Because newer compression schemes such as H.264 allow the GOP structure to

vary during encoding, we modified our encoder so that it randomly chose between

the GOP structures IBBPBB, IBBPBBPBB, and IBBPBBPBBPBB for each GOP

during encoding. By doing this, we were able to simulate the forensically significant

manner in which H.264 differs from MPEG-2: its use of variable GOP lengths. We

compressed the first 250 frames of each of the uncompressed video sequences using

this variable GOP length encoder, creating a second database of unaltered videos.

Frame deletion experiments run on these videos were used to simulate the aperiodic

frame deletion fingerprints introduced by newer video compression techniques.

150

5.6.1 Frame Deletion Detection

To test the forensic effectiveness of our proposed frame deletion detectors, we

first created a database of forged videos. To do this, we deleted 3, 6, and 9 frames

from the beginning of each unaltered video sequence compressed using a fixed length

GOP, then recompressed each video. This corresponded to removing 1/4, 1/2, and

3/4 of a GOP respectively. To test against frame addition, we added 6 frames

to the beginning of each unaltered video sequence compressed with a fixed length

GOP, then recompressed these videos. Additionally, we deleted 6 frames from the

videos compressed using randomly varying GOP lengths. We then used each of

our proposed detection techniques in conjunction with a series of different decision

thresholds to determine if frame deletion or addition had occurred in each video.

The probabilities of detection Pd and false alarm Pfa were determined for

each threshold by respectively calculating the percentage of forged videos that were

correctly classified and the percentage of unaltered videos that were incorrectly

classified. We used these results to generate the series of ROC curves for δfixed

shown in Fig. 5.4 and for δvar shown in Fig. 5.5. We can see from these ROC curves

that both detectors’ performance remains consistent regardless of the number of

frames deleted. Furthermore, we can see that frame addition can be detected with

the same accuracy as frame deletion. By examining the ROC curves for each detector

corresponding to the average performance across all frame deletion amounts, we can

see that both detectors were able to achieve at a Pd of at least 85% at a false alarm

rate less than 5%. Both detectors also achieved a Pd of at least 90% at a false

151

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

3 Frames Deleted
6 Frames Deleted
9 Frames Deleted
Frame Deletion
Average Performance
6 Frames Added
Random GOP

Figure 5.5: ROC curves for δvar obtained by testing against different amounts frame deletion

and addition.

alarm rate less than 10%. These results indicate that both detectors can be used

to reliably detect frame deletion. Additionally, results presented in Fig. 5.5 suggest

that δvar can be used to detect frame deletion in videos compressed using randomly

varying GOP lengths as well.

5.6.2 Frame Deletion Anti-Forensics

To evaluate the performance of our proposed frame deletion anti-forensic tech-

nique, we deleted six frames from each unaltered video compressed using a fixed

GOP structure, then recompressed each video while applying our anti-forensic tech-

nique. When implementing our anti-forensic technique, we incorporated the modi-

fications to our algorithm discussed in Section 5.4.

An example of typical results achieved by our proposed anti-forensic technique

is shown in Fig. 5.6. This figure displays the P-frame prediction error sequence taken

from an untampered MPEG compressed version of the ‘Foreman’ video, as well as

152

0 10 20 30 40 50 59
0

2

4

6

8

10

12

n

e(
n)

0 10 20 30 40 50 59
0

2

4

6

8

10

12

n

e(
n)

0 10 20 30 40 50 59
0

2

4

6

8

10

12

n

e(
n)

−pi −pi/2 0 pi/2 pi
0

k

|E
(k

)|

−pi −pi/2 0 pi/2 pi
0

k

|E
(k

)|

−pi −pi/2 0 pi/2 pi
0

k

|E
(k

)|

Figure 5.6: P-frame prediction error sequences (top row) and the magnitudes of their respective

DFTs (bottom row) obtained from an untampered MPEG compressed version of the ‘Foreman’

video (left column), as well as from the same video after the first six frames were deleted followed by

recompression without anti-forensic modification (middle column) and with the use of our proposed

anti-forensic technique (right column).

the P-frame prediction error sequences obtained after deleting the first six frames

and then recompressing the video with and without applying our anti-forensic tem-

poral fingerprint removal technique. The temporal fingerprint features prominently

in the prediction error sequence of the video in which frames are deleted without

the use of our anti-forensic technique, particularly in the frequency domain. By

contrast, these fingerprints are absent from the prediction error sequence when our

anti-forensic technique is used to hide evidence of frame deletion.

Next, we examined the ability of our proposed anti-forensic technique to fool

each of our automatic frame deletion detection techniques. To do this, we used

both of our proposed detection techniques to classify each video in our databases of

unaltered and anti-forensically modified MPEG-2 compressed videos as unaltered or

one from which frames had been deleted. This was done using a series of different

153

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

δ
fixed

δ
var

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

S
α

δ
fixed

δ
var

(b)

Figure 5.7: Experimental results showing (a) ROC curves for δfixed and δvar and (b) anti-forensic

susceptibility plots for δfixed and δvar obtained by testing on anti-forensically modified MPEG-2

videos.

decision thresholds; then the probabilities of detection and false alarm corresponding

to each decision threshold were calculated from the results. We used this data to

generate a new set of ROC curves for δfixed and δvar when frame deletion has been

disguised using anti-forensics. These ROC curves are displayed in Fig. 5.7(a).

In this figure, the dashed line represents the performance of a decision rule

that randomly classifies a video as forged with a probability equal to Pfa . Reducing

a detection technique’s performance to this level corresponds to making it equivalent

to a random guess. As we can see from Fig. 5.7(a), both frame deletion detection

techniques perform at or near this level when our anti-forensic technique is applied

to a video. Similarly, we used this data to compute the anti-forensic susceptibil-

ity of each detector to our proposed anti-forensic frame deletion technique. These

results, which are displayed in Fig. 5.7(b), show that the detector δvar is entirely

susceptible to our anti-forensic technique at all false alarm levels. The detector δfixed

154

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

Exhaustive
Search
Three Step
Search

Figure 5.8: ROC curves for the anti-forensics detector δmv when tested on video data compressed

using an exhaustive search to determine motion vectors and video data encoded using a three step

motion vector search algorithm.

was slightly less susceptible to our anti-forensic attack, however, our anti-forensic

technique achieved an anti-forensic susceptibility of .7 or greater for all Pfa ≤ 80%

for this detector. These results demonstrate that our proposed anti-forensic tech-

nique is able to render forensic frame deletion detection techniques nearly completely

ineffective.

5.6.3 Detecting Frame Deletion Anti-Forensics

In order to evaluate the performance of our technique designed to detect the

use of frame deletion anti-forensics, we re-examined the videos in our database

of unaltered and anti-forensically modified MPEG-2 compressed videos. We used

our proposed detector δmv to classify each video as unmodified or anti-forensically

modified at a variety of different decision thresholds, then used these results to

generate the ROC curve shown in Fig. 5.8.

155

The results of this experiment show that our proposed detector achieved per-

fect detection (i.e. a Pd of 100% at a Pfa of 0%). These results are slightly mislead-

ing, however, because the motion vectors of the videos in the unaltered database are

obtained using an exhaustive search. Since an exhaustive search is also used when

estimating a video’s true motion during the detection of anti-forensics, there will be

very little difference between an unaltered video’s stored and recalculated motion

vectors.

In reality, many video encoders use efficient algorithms to peform motion es-

timation. These algorithms greatly reduce the time needed to encode a video and

produce a near optimal set of motion vectors. Nonetheless, the motion vectors ob-

tained using these algorithms differ slightly from those obtained using an exhaustive

search. As a result, it is more difficult to differentiate between an anti-forensically

modified video and an unaltered video if one of these algorithms is used during

encoding.

To evaluate the performance of our proposed frame deletion anti-forensics de-

tection technique under less favorable conditions, we modified our video coder to

perform motion estimation using the three step search algorithm proposed by Zhu

and Ma [59]. We then created a new database of compressed unaltered videos whose

motion vectors were obtained using this efficient search algorithm. We repeated the

previous experiment with this data and used the results to generate the ROC curve

shown in Fig. 5.8.

We can see from Fig. 5.8 that the performance of our proposed detector is

degraded in this scenario. While the detection of frame deletion anti-forensics can

156

still be performed, it must be done with a higher false alarm rate. This suggests that

if a forensic investigator’s maximum acceptable false alarm rate is sufficiently low,

a video forger using anti-forensics is likely to avoid detection. To mitigate this, a

forensic investigator may wish to repeat frame deletion anti-forensics detection using

a decision threshold corresponding to a higher false alarm rate, but not immediately

assume that detections correspond to forged videos. Instead, these videos can be

flagged for closer investigation using additional forensic techniques.

5.6.4 Game Theoretic Evaluation of Video Forensics and Anti-Forensics

Once we evaluated the performance of each proposed forensic detection tech-

nique as well as the proposed video frame deletion anti-forensic technique, we used

our game theoretic framework to identify the optimal strategies of both the forensic

investigator and video forger. To do this, we modified our frame deletion anti-

forensic technique to operate at variable strengths. This was accomplished by

choosing the target P-frame prediction error sequence associated with strength k

as

ẽk(n) = kẽ(n) + (1− k)e(n), (5.25)

where ẽ(n) denotes the fingerprint-free target prediction error sequence described in

Section 5.3.

Because our proposed anti-forensic technique introduces virtually no distortion

into a forged video, we set the term γ(·) = 0 in the utility function of player 2. As a

result, U2(k, η) = −U1(k, η) causing our video forensic scenario to reduce to a zero

157

00.020.040.060.080.1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

P
fa

 Constraint ηAnti−Forensic Strength k

U
til

ity

Nash Equilibrium = (0.4,0)

Figure 5.9: Utility function of the forensic investigator U1(k, η) when the total probability of

false alarm constraint is PTot
fa = 8.3%.

sum game. This allowed us to find the Nash equilibrium strategies by solving the

following equation

(k∗, η∗) = argmax
η

min
k
U1(k, η). (5.26)

Since no closed form expression for U1(k, η) exists in this scenario, we evaluated

(5.26) numerically. This was done by first deleting frames from each single com-

pressed video in our database, then anti-forensically modifying each video with

strengths ranging between 0 and 1. For each anti-forensically modified video, we

performed frame deletion detection and anti-forensics detection using a variety of

different decision thresholds and then calculated the Pfa and Pd associated with

each decision threshold and anti-forensic strength pairing. Using this data, the

Nash equilibrium strategies and probability of forgery detection were calculated.

Fig. 5.9 shows the utility function U1(k, η) when the forensic investigator

operates under the false alarm constraint P Tot
fa = 8.3%. Under this condition, the

158

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

Figure 5.10: Nash equilibrium ROC curve for video frame deletion detection.

Nash equilibrium strategy is k = 0.4, η = 0.0, which corresponds to the forger

reducing the strength of the anti-forensic attack to half and the forensic investigator

allowing all of the false alarms to come from the anti-forensic detector δmv. The

probability with which the forensic investigator will detect a forgery, i.e. the value

of U1(k
∗, η∗), is 38.9%. We note that it is less than the probability of detection

achieved by both the frame deletion detector and the anti-forensics detector at the

same false alarm level. This reinforces the notion that the forger can create a more

successful anti-forensic attack by decreasing its strength.

We determined the Nash equilibrium strategies and calculated the probability

of forgery detection for a set of total probability of false alarm constraints between

0% and 100%. We used these results to create the NE ROC curve displayed in Fig.

5.10. From this curve we can see that if the forensic investigator must operate with

a total probability of false alarm constraint of 10% or less, frame deletion forgeries

are difficult to detect. If the forensic examiner is able to relax their probability of

false alarm constraint to roughly 15% or greater, frame deletion forgeries will be

159

detected at a rate of at least 85%.

Table 5.1 shows the Nash equilibrium strategies for a variety of total probabil-

ity of false alarm levels ξ. In some cases, multiple values of k are Nash equilibrium

strategies for a particular value of ξ. We note that here, the value of U1 correspond-

ing to each Nash equilibrium strategy at a particular ξ value is the same. From the

data presented in this table, we can observe two trends. The first is that as the

false alarm constraint increases, the optimal strategy for the forger is to decrease

the strength for applying anti-forensics. The second is that regardless of the value

of ξ, the optimal strategy for the forensic investigator is to allow all of the false

alarm contributions to come from the anti-forensics detector δmv. This is because

the effectiveness of the frame deletion detection technique drops off quickly as k is

increased. By contrast, the anti-forensics detector can still operate effectively even

at low anti-forensic strengths. As a result, it is in the best interest of the forensic

investigator to place the maximum load on δmv.

5.7 Summary

In this chapter, we have proposed a set of automatic frame deletion or addi-

tion detection techniques that operate by identifying increases in a video’s P-frame

prediction error that correspond to frame deletion or addition fingerprints. To do

this, we first developed a model of a video’s P-frame prediction error sequence before

and after frame deletion or addition has occurred. Additionally, we used this model

to design an anti-forensic technique capable of removing frame deletion or addition

160

Table 5.1: Nash equilibrium strategies k∗ and η∗ obtained for the forger and forensic investigator

respectively at different constraints ξ on the forensic investigator’s total probability of false alarm.

ξ k∗ η∗

0.0% 0.6, 0.7, 0.8, 0.9, 1.0 *

2.8% 0.6 0.0%

5.6% 0.7 0.0%

8.3% 0.4 0.0%

11.1% 0.4, 0.5, 0.6 0.0%

13.9% 0.1, 0.2, 0.4 0.0%

16.7% 0.1, 0.2, 0.3, 0.5 0.0%

· · · · · · · · ·

161

fingerprints form a forged video. This technique operates by first constructing a

target prediction error sequence free from frame deletion or addition fingerprints,

then modifying the motion vectors of each P-frame so that its total absolute pre-

diction error matches the target value. Furthermore, we have proposed a forensic

technique to detect the use of frame addition or deletion anti-forensics by comparing

a compressed video’s motion vectors to an estimate of the true motion in the video.

In addition to developing a set of forensic and anti-forensic techniques related

to video frame deletion or addition, we have proposed a set of methods to eval-

uate the performance of anti-forensic techniques. These include an anti-forensic

attack’s probability of anti-forensic effectiveness and the anti-forensic susceptibil-

ity of a forensic detector to a particular anti-forensic attack. We have additionally

proposed a game theoretic framework that can be used to understand the interplay

between a forensic detector and a forger when the forger’s use of anti-forensics can

be detected. This framework allows us to identify the optimal set of actions for both

the forensic investigator and forger, as well as to evaluate the ability of the forensic

investigator to identify forgeries.

Through a series of simulations and experiments, we have evaluated the per-

formance of each of our proposed forensic and anti-forensic techniques. Our results

show that both of our proposed frame deletion or addition detection techniques can

automatically detect video forgeries with a high degree of accuracy if anti-forensics is

not used. These results also show that our proposed anti-forensic frame deletion or

addition technique can successfully fool both forensic techniques. If this technique

is applied at full strength, however, our anti-forensics detector is able to identify

162

that anti-forensics has been used with a high degree of accuracy.

We have used our game theoretic framework to identify the optimal strategies

for a forensic investigator and video forger to employ in a frame deletion or addition

forgery scenario. These results show that as the forensic investigator’s probability

of false alarm constraint is increased, the strength with which the forger should

apply anti-forensics is decreased. By contrast, the forensic investigator should allow

the video frame addition or deletion detector to operate at a Pfa of 0% and allow

all of the false alarms to come from the anti-forensics detector, regardless of the

constraint on the total probability of false alarm. Furthermore, we have found that

if the forensic investigator is bound by a total probability of false alarm constraint

of approximately 10% or less, the forensic investigator will have less than a 50%

chance of detecting a video forgery. If the total probability of false alarm constraint

is above 15%, video forgeries can be detected at a rate of 85% or greater.

163

Chapter 6

Protection Against Reverse Engineering in Digital Cameras Using

Anti-Forensics

Though the intended use of multimedia forensics is to provide information

security, researchers have overlooked an important unintended use of forensic tech-

niques: multimedia forensics can be used to reverse engineer proprietary signal pro-

cessing components in digital devices ! Digital cameras are an important example of

this. Forensic techniques exist to estimate the color filter array (CFA) pattern and

interpolation coefficients used during the image formation process [3,6,35,53]. Fur-

thermore, a camera’s white balancing parameters can be forensically estimated [51].

Since camera manufacturers likely wish to protect their proprietary implementations

of both color interpolation and white balancing, digital forensic techniques may in

fact pose an intellectual property threat.

Because forensic techniques pose an information security threat when viewed in

this light, we propose using anti-forensics to protect against reverse engineering. To

accomplish this, we propose placing an anti-forensic processing module at the end of

a device’s internal signal processing pipeline. This will prevent forensic techniques

from using a device’s output to estimate signal processing operations inside the

device.

In this chapter, we propose a proof-of-concept technique to prevent a digital

164

camera’s color interpolation method from being forensically reverse engineered. We

accomplish this through a combination of nonlinear filtering and perturbations to an

image’s sampling grid. We demonstrate the effectiveness of our proposed technique

by testing the ability of existing forensic algorithms to identify the color interpolation

method used to form an image after our anti-forensic technique has been applied.

6.1 The Image processing pipeline

A digital camera operates by measuring the intensity of light reflected from

a real world R scene onto an electronic sensor known as a charged coupling device

(CCD), as is shown in Fig. 6.1. The light enters the camera by first passing through

a lens. Since most CCDs are only capable of measuring one color of light at each

pixel location, the light next passes through a color filter array P . The CFA is

an optical filter consisting of a repeating fixed pattern (typically 2x2) which allows

only one color band of light (red, green, or blue) to fall incident on the CCD at a

particular pixel location.

The CCD then measures the light intensity of the corresponding color band at

each pixel location. This yields an image S constructed of three partially sampled

color layers such that

Sx,y,c =















Rx,y,c if Px,y = c,

0 otherwise.

(6.1)

where x and y are indices denoting a pixel’s spatial location and c specifies its color

layer.

Next, unobserved color layer values at each pixel location are interpolated

165

Figure 6.1: A digital camera’s signal processing pipeline.

using nearby directly observed color layer values. This interpolation process can

be performed in many ways and is typically camera model specific. After this, the

image may be subject to internal post-processing, such as white balancing, before

it is stored or output.

6.1.1 Component Forensics

Knowledge of a camera’s color interpolation coefficients and CFA pattern can

be used to perform a variety of forensic tasks. Forensic techniques that estimate

a camera’s color interpolation coefficients and CFA pattern, then use these to per-

form another forensic task, are known as component forensic techniques. Component

forensic techniques have been developed to identify forgeries by detecting localized

interpolation irregularities [35,52]. Because interpolation methods and their param-

eters are typically camera model specific, other component forensic techniques have

been developed to identify an image’s source camera [3, 6, 53]. Others use knowl-

edge of the CFA pattern and interpolation coefficients to estimate parameters of a

camera’s internal post-processing operations such as white balancing [51].

While component forensic techniques vary in the specific way that they es-

timate a camera’s color interpolation coefficients, they all share the same basic

166

structure. Here we use the technique proposed by Swaminathan et al. [53] as a

baseline and describe how it operates.

First, an image’s CFA pattern is assumed. By doing this, a forensic examiner

can separate directly observed pixels in a color layer from those that have been

interpolated. Next, the directly observed color values are used to calculate the

horizontal and vertical gradients of each pixel. These are used to classify each each

pixel into one of three sets for each color layer depending on the strength of its

horizontal and vertical gradient. For each of the nine pairings of color layer and

gradient class, the directly observed and interpolated color layer values are used to

obtain a least squares estimate of the color interpolation filter coefficients.

Since in most cases the true CFA pattern is not known, this process is re-

peated for each of the 36 possible 2× 2 CFA patterns. After the set of interpolation

coefficients is estimated for a candidate CFA pattern, each color layer is resampled

using the candidate CFA and the color layers are interpolated using the estimated

coefficients. The difference between the original image and the re-interpolated im-

age is then calculated for each set of estimated interpolation coefficients and CFA

pattern. The CFA pattern and interpolation coefficients that result in the lowest

difference are chosen as the final estimate.

The estimated color interpolation coefficients can be used to train a support

vector machine (SVM) to identify the color interpolation method used or identify

the model of the camera used to capture an image.

167

6.2 Anti-Forensic Reverse Engineering Prevention

A party attempting to reverse engineer a digital camera will likely try to

determine the color interpolation method used by that camera and estimate its

color interpolation coefficients. Though reverse engineering is not the intended use of

component forensic techniques, they can be used by a reverse engineer to accomplish

this. As a result, camera manufacturers may wish to incorporate some form of

protection against reverse engineering into their devices.

Swaminathan et al.’s technique obtains an estimate of the camera’s color in-

terpolation coefficients as follows. For a given color layer and CFA pattern, each

interpolated pixel b is written as a linear combination of nearby directly observed

pixel values a according to the equation

bx,y =
∑

(i,j)∈ΩI

w
(I)
i,j ax+i,y+j (6.2)

where w(I) is the interpolation filter and ΩI is its support. These equations are

grouped by color layer and gradient class into systems of equations of the form

Aw = b. A least squares approximation of the interpolation filter coefficients is

calculated for each set of equations, resulting in nine sets of filter coefficients.

To combat forensic reverse engineering, we propose incorporating an anti-

forensic module into a digital camera’s processing pipeline as is shown in Fig. 6.2.

This module is designed to interfere with two important aspects of component foren-

sic algorithms:

1. The estimate of the interpolation method is linear.

168

Figure 6.2: A digital camera’s internal processing pipeline with our proposed anti-forensic module

integrated into it.

2. This linear estimate depends on the ability of the forensic algorithm to guess

which color layer values were directly observed and which were interpolated.

The first element of our anti-forensic module is a nonlinear filter. This is

used to reduce linear dependencies between interpolated pixel values and nearby

directly observed pixel values. In this proof-of-concept implementation, we use a

2 × 2 median filter to perform nonlinear filtering. Letting d denote an input pixel

value and f denote an output pixel value, the 2× 2 median filter is defined as

fx,y = median{dx,y, dx+1,y, dx,y+1, dx+1,y+1}. (6.3)

The second element of our anti-forensic module involves downsizing the image

by a small factor. This is done to disrupt the color sampling grid and prevent the

forensic algorithm from identifying directly observed and interpolated color values.

Each pixel in the downsized image will correspond to a greater effective area than

in the originally sized image. As a result, no pixel in the downsized image will cor-

respond solely to a directly observed or color interpolated pixel. This phenomenon

is shown in Fig. 6.3.

In this proof-of-concept implementation, we downscale using bilinear interpo-

lation. Let each color layer be X × Y pixels before downsizing and P × Q pix-

els after. Also, let the integer pixel location (p, q) in the downsized image corre-

169

sponds the real valued location (u, v) in the originally sized image. These loca-

tions are related according to the equations u = (p(X − 1) + P −X)/(P − 1) and

v = (q(Y − 1) +Q− Y)/(Q− 1). Additionally, let x ≤ u < x+1 and y ≤ v < y+1

as is shown in Fig. 6.4. Each pixel g in the downscaled color layer is given by

gu,v =
∑

(k,l)∈ΩD

w
(D)
k,l (u, v)fx+k,y+l, (6.4)

where ΩD = {(0, 0), (0, 1), (1, 0), (1, 1)} and w
(D)
k,l (u, v) are the spatially varying

downscaling coefficients. The coefficients of the bilinear downscaling filter are calcu-

lated using the following equations: w
(D)
0,0 (u, v) = (1−u+x)(1−v+y), w

(D)
0,1 (u, v) =

(1− u+ x)(v− y), w
(D)
1,0 (u, v) = (u− x)(1− v+ y), and w

(D)
1,1 (u, v) = (u− x)(v− y).

Combining (6.3), (6.4), and the expressions relating p and q to u and v, the

output of the anti-forensic module can be written as

gp,q =
∑

(k,l)∈ΩD

(

w
(D)
k,l (

p(X−1)+P−X
P−1

, q(Y−1)+Q−Y
Q−1

)

×median{dx+k,y+l, dx+k+1,y+l, dx+k,y+l+1, dx+k+1,y+l+1}
)

.

(6.5)

When our proposed anti-forensic module is employed, both directly observed and

interpolated color layer values are modified according to this expression. As a result,

both a and b are modified in (6.2) causing the least squares estimate to result in a

poor approximation of the interpolation method.

In practice we have found that the image needs to be downscaled only a min-

imal amount in order to protect against forensic reverse engineering. We explore

this in further detail in Section 6.3.

170

Figure 6.3: Top: Changes in the effective area of each pixel after downsizing. Bottom: A

downsized color layer overlaid on the pixels of the original color layer.

Figure 6.4: Bilinear interpolation example.

171

6.3 Simulations and Results

6.3.1 Performance Metric

In order to assess our proposed anti-forensic technique’s ability to protect

against reverse engineering, we first need to establish a measure of the attacking

component forensic technique’s performance.

LetM and M̂ be random variables representing the color interpolation method

used to form an image and the method identified using component forensics re-

spectively. Additionally, let M be the set of all candidate interpolation methods.

For a given interpolation method m ∈ M, the probability P
(m)
C that interpola-

tion method m was correctly identified by the component forensic technique is

P
(m)
C = P (M = m|M̂ = m). We measure the performance of the component

forensic technique by evaluating this probability for all m ∈ M.

We note that if P
(m)
C ≤ 1/|M|, where |M| denotes the cardinality of the

set M, then the component forensic technique performs no better than a random

guess. Ideally, we would like our anti-forensic module to reduce P
(m)
C below 1/|M|

for allm ∈ M, thus rendering the component forensic technique’s output completely

unreliable.

6.3.2 Experimental Results

We created a test database of images whose color interpolation method and

CFA pattern was known as ground truth in order to experimentally evaluate the

performance of our proposed anti-forensic reverse engineering prevention technique.

172

This was done by first creating a set of 100 272 × 272 pixel images cropped from

the center of images in the Uncompressed Colour Image Database [38]. Next, we

resampled the color components of each image using the Bayer pattern as the CFA

pattern. We then performed color interpolation using five different color interpo-

lation methods: bilinear, bicubic, nearest neighbor, median filter, and smooth hue

transition. Descriptions of the interpolation methods used can be found in [53]

and [35]. (We note that the median filter color interpolation technique is not simply

applying a median filter to each color layer.)

The resulting 500 images model the direct output of a digital camera. Be-

cause post-processing such as compression decreases the performance of component

forensic techniques [53], we did not subject these images to post-processing. This

allowed us to evaluate the performance of our anti-forensic module operating under

worst case conditions; i.e. ideal conditions for component forensic techniques. Ad-

ditionally, this mimics the settings that would likely be chosen by someone wishing

to reverse engineer a camera using component forensics with access to the camera.

Finally, we passed these images through our proposed anti-forensic module. We

varied the downscaling amount between 0 and 28 pixels in 4 pixel increments. This

created 4000 anti-forensically modified images in addition to the 500 unmodified

images. Fig. 6.5 shows an example of an image before and after it passes through

our anti-forensic module.

After constructing our image database, we used the component forensic tech-

nique proposed by Swaminathan et al. in [53] to estimate the CFA pattern and

color interpolation coefficients for each of the 4500 images. We then trained a sup-

173

Figure 6.5: Left: A typical image formed using bilinear color interpolation. Right: The same

image after being passed through our anti-forensic module.

port vector machine (SVM) with a radial basis function kernel to identify the color

interpolation method used to form each image [4].

To achieve a baseline assessment of the component forensic technique’s ability

to identify each color interpolation method, we first evaluated it using only unmod-

ified images. This was done using cross validation by dividing the set of unmodified

images into 10 subsets. The color interpolation method was identified for every

image in a given subset after training the SVM using the remaining 9 subsets. This

process was repeated for each of the 10 subsets. The results were used to calculate

P
(m)
C for each interpolation method according to the equation

P
(m)
C =

∑

n

1(Mn = m, M̂n = m)

1(M̂n = m)
. (6.6)

where n is the picture index and 1(·) is the indicator function. When testing on

unmodified images, the component forensic technique achieved perfect performance,

i.e. P
(m)
C = 1 for each of the 5 color interpolation techniques.

Next, we tested the effectiveness of our anti-forensic module. We did this by

using the trained SVM to identify the color interpolation method used to form each

of the 4000 anti-forensically modified images. To ensure that image content had

174

0 4 8 12 16 20 24 28
0

0.2

0.4

0.6

0.8

1

Number of Pixels Image Size Reduced By

P
C

Bilinear
Bicubic
Nearest Neighbor
Median
Smooth Hue

Figure 6.6: Plot of downscaling amount vs. PC .

no influence on the identification results, the anti-forensically modified images were

divided into 10 subsets corresponding to the unmodified training images. During

testing, the SVM was trained using the 9 subsets of training data corresponding to

the unused testing subsets. This data was used to calculate P
(m)
C for every pairing

of interpolation method and downscaling amount.

These results of this test are shown in Fig. 6.6. We note that in this fig-

ure, P
(m)
C is not displayed for some interpolation techniques at certain downscaling

amounts. This is because for these downscaling amounts, no images were identified

as being formed using these interpolation techniques. As a result, P
(m)
C is undefined

in these situations. This indicates ideal perfomance for the anti-forensic module,

since the component forensic algorithm was unable to correctly identify these inter-

polation techniques.

We find that our proposed anti-forensic module achieves its best performance

when images are downsized by only 4 pixels. This is advantageous because down-

sizing by such a minor amount minimizes undesired effects caused by downsizing.

175

Since 5 candidate interpolation methods were considered, the component forensic

technique performs better than a random guess only when P
(m)
C ≤ 0.2. When

our anti-forensic module downsizes the image by 4 pixels, our results show that

P
(m)
C > 0.2 only when bicubic color interpolation is considered. Even in this case,

P
(bicubic)
C = 0.27 which exhibits little improvement over a random guess. These re-

sults suggest that our proposed anti-forensic module is very effective at protecting

against reverse engineering.

The use of our anti-forensic module, particularly the nonlinear filter compo-

nent, will introduce some distortion into the output image. To mitigate this, we can

chose not to apply median filtering to ever pixel in the image. Instead, we can ran-

domly select a number of pixels to filter and leave the rest unaltered. This comes at

a cost, however, in the form of an increase in P
(m)
C . Depending on the image quality

constraints of the camera manufacturer and the desired level of reverse engineering

protection, a manufacturer can choose a balance between these quantities that best

meets its needs.

To characterize the trade-off between image quality and reverse engineering

protection, we varied the probability that a pixel would be median filtered during

anti-forensic modification between 0% and 100%, then repeated the previous ex-

periment. In this test, each image was downscaled by 4 pixels in each direction.

We then calculated P
(m)
C for each interpolation method at each pixelwise median

filtering probability. Additionally, we measured the distortion introduced by our

anti-forensic module by measuring the average structual similarity (SSIM) between

each image before and after anti-forensic modification [56]. The results of this ex-

176

0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSIM

P
C

Bilinear
Bicubic
Nearest Neighbor
Median
Smooth Hue

Figure 6.7: Plot of SSIM vs. PC .

periment are shown in Fig. 6.7. From this figure we can see that P
(m)
C can either

be kept equivalent to a random guess or held to its minimum value while achieving

a SSIM of .85 or greater. We note that for nearest neighbor color interpolation, a

SSIM of greater than .92 was achieved without the component forensic algorithm

being able to identify any images as having been nearest neighbor interpolated (thus

making P
(m)
C undefined).

6.4 Summary

In this chapter, we have proposed a new anti-forensic module to be incorpo-

rated into a digital camera’s signal processing pipeline to protect against reverse

engineering. By introducing nonlinearities into an image and disrupting its color

sampling grid, our anti-forensic module prevents component forensic techniques from

accurately estimating the color interpolation method used by a digital camera during

the image formation process. Through a set of experiments, we have demonstrated

177

that our proposed anti-forensic technique is able to reduce the performance of a

component forensic technique to that of a random guess or worse in nearly all cases

test.

178

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have examined the problem of authenticating mul-

timedia signals using digital forensic techniques. By identifying the fingerprints of

several editing operations, we have have developed new techniques to identify edited

and falsified digital multimedia content. Additionally, we have taken the novel step

of examining multimedia security from the forger’s point of view. We have shown

that a forger can design anti-forensic operations and use them to hide evidence of

file manipulation. By studying both forensics and anti-forensics, we hope to provide

a more complete view of multimedia information security.

In Chapter 2, we identified the fingerprints left in a digital image’s pixel value

histogram by pixel value mappings. Using these fingerprints, we proposed a forensic

technique to detect the use of contrast enhancement on digital images. We identi-

fied the specific fingerprints of histogram equalization, and developed a detector to

determine if this specific contrast enhancement operation was used. Since a forger

often must use contrast enhancement to ensure that lighting conditions match when

creating a cut-and-paste forgery, we showed that cut-and-paste forgeries can be

identified by performing localized contrast enhancement detection. Additionally, we

proposed a technique to detect the addition of noise to a previously JPEG com-

179

pressed image by showing that additive noise prevents the fingerprints of a specific

pixel value mapping from arising.

In Chapter 3, we developed a method to jointly estimate the contrast en-

hancement mapping used to modify a digital image as well as the image’s pixel

value histogram before it was contrast enhanced. To do this, we developed a prob-

abilistic model of an image’s pixel value histogram. We used this model to identify

the histogram entries that were most likely to correspond to contrast enhancement

fingerprints, then estimated the contrast enhancement mapping used to create these

fingerprints.

In Chapter 4, we proposed a set of anti-forensic techniques capable of re-

moving compression fingerprints from a digital image. To remove the transform

coefficient quantization fingerprints that arise from image compression, we devel-

oped a framework that operates by first modeling the image’s unaltered transform

coefficient distribution, then adding anti-forensic dither to the quantized transform

coefficients. We proved that our choice of anti-forensic dither distributions will com-

pletely remove all quantization artifacts and result in an anti-forensically modified

transform coefficient distribution that matches the unaltered image’s transform co-

efficient distribution. Additionally, we proposed a technique capable of removing

statistical traces of blocking artifacts that commonly arise during JPEG compres-

sion. We demonstrated that these techniques can be used to create undetectable

forgeries and falsify an image’s origin.

In Chapter 5, we examined the problem of detecting frame deletion in mo-

tion compensated digital video. We developed a set of forensic techniques that are

180

capable of detecting frame deletion when a video encoder uses a fixed or variable

length group of picture sequence. We proposed an anti-forensic technique capable of

hiding frame deletion fingerprints and showed that it can be used to hide evidence

of video frame deletion. Furthermore, we developed a method to detect the use of

frame deletion anti-forensics.

Because a forgery can be detected by identifying editing fingerprints or fin-

gerprints left by anti-forensics, we showed that a forger must balance the strength

with which anti-forensics are applied. Similarly, we showed that since a forensic

investigator must employ both an editing detector and an anti-forensics detector, a

forensic investigator must find the optimal balance between the false alarm rates of

both detectors. We showed that both a forger and forensic investigator’s optimal

choice of actions are dependent on the actions of the other party and proposed a

game theoretic framework to identify the set of actions which neither party has an

incentive to deviate. We applied our game theoretic framework to the video frame

deletion forensic scenario and identified under which conditions a video forgery is

likely to be detected.

In Chapter 6, we demonstrated that anti-forensics can be used to prevent re-

verse engineering in digital devices. To prevent component forensic techniques from

estimating a digital camera’s color interpolation algorithm, we proposed incorpo-

rating an anti-forensic module consisting of nonlinear filtering and perturbations

to an image’s sampling grid into digital cameras. We showed that this technique

prevents component forensic techniques from identifying a digital camera’s interpo-

lation method at a rate slightly better than a random guess.

181

7.2 Future Work

A major unexamined challenge arises from the fact that in practice, multiple

forensic tests must be run to identify the many ways that a multimedia file may

be altered. Currently, little research exists describing how to optimally combine

the results of multiple forensic tests. I plan to develop theoretical techniques to

both merge the results of several forensic tests and control the total false alarm rate

when multiple operation-specific forensic tests are used. To do this, I will examine

the effect of a detection technique’s accuracy and the probability that a forgery

operation is used on the optimal weight of a forensic test.

As I have shown in my anti-forensic research, there are many ways an intelligent

forger can attempt to avoid detection. I am interested in researching new methods

that a forger can employ to avoid forgery detection and developing new forensic

techniques in response. For example, a forger may take advantage of the variability

in the accuracy of different forensic tests by choosing to only use editing operations

that are difficult to forensically identify. As a result, a forensic investigator must

adjust the detection strategy to compensate for this change in a forger’s behavior. I

will use game theory and other techniques to study the dynamic interplay between an

intelligent forger and a forensic investigator. Based on my findings, I will determine

how to optimally detect multimedia forgeries when dealing with an intelligent forger

who actively evades forensic detection.

Currently, most forensic techniques are designed to detect the use of an indi-

vidual editing operation or identify inconsistencies in a specific property of a mul-

182

timedia signal. In reality, however, many editing operations can and are used to

create a forgery. I am interested in addressing the many research issues that arise

due to this disconnect. For example, forensic techniques that detect a specific edit-

ing operation often work by identifying unique traces left by that operation in a

multimedia signal. Subsequent editing and processing may alter these traces and

affect the accuracy of forensic techniques. I plan to study the interactions between

different multimedia processing operations and the effects that they have on forensic

traces. I will use this research to improve the robustness of forensic techniques, and

tackle new problems such as identifying the order in which editing operations were

applied. This may provide insight into the forgery creation process and help identify

who performed malicious tampering if a multimedia file was processed by several

users.

183

Bibliography

[1] I. Avcibaş, S. Bayram, N. Memon, M. Ramkumar, and B. Sankur. A classifier
design for detecting image manipulations. In Proc. IEEE Int. Conference on

Image Processing, volume 4, pages 2645–2648, October 2004.

[2] S. Bayram, I. Avcibaş, B. Sankur, and N. Memon. Image manipulation detec-
tion. Journal of Electronic Imaging, 15(4):041102, 2006.

[3] H. Cao and A. C. Kot. Accurate detection of demosaicing regularity for digital
image forensics. IEEE Trans. on Information Forensics and Security, 4(4):899
–910, December 2009.

[4] C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines.
ACM Trans. on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[5] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš. Determining image origin
and integrity using sensor noise. IEEE Trans. on Information Forensics and

Security, 3(1):74–90, March 2008.

[6] W. H. Chuang and M. Wu. Semi non-intrusive training for cell-phone camera
model linkage. In Proc. IEEE Workshop on Information Forensics and Security,
pages 1 –6, Seattle, WA, December 2010.

[7] Z. Fan and R. de Queiroz. Identification of bitmap compression history:
JPEG detection and quantizer estimation. IEEE Trans. on Image Processing,
12(2):230–235, February 2003.

[8] H. Farid. Blind inverse gamma correction. IEEE Trans. on Image Processing,
10:1428–1433, October 2001.

[9] H. Farid. Digital image ballistics from JPEG quantization. Technical Report
TR2006-583, Dept. of Computer Science, Dartmouth College, 2006.

[10] J. Fridrich. Image watermarking for tamper detection. In IEEE Int. Confer-

ence on Image Processing, volume 2, pages 404 –408 vol.2, Chicago, IL, USA,
October 1998.

[11] J. Fridrich, D. Soukal, and J. Lukáš. Detection of copy-move forgery in digital
images. In Proc. Digital Forensic Research Workshop, 2003.

[12] T. Gloe, M. Kirchner, A. Winkler, and R. Böhme. Can we trust digital image
forensics? In Proc. 15th Int. Conference on Multimedia, pages 78–86, 2007.

[13] M. Goljan, J. Fridrich, and M. Chen. Defending against fingerprint-copy attack
in sensor-based camera identification. IEEE Trans. on Information Forensics

and Security, 6(1):227 –236, March 2011.

184

[14] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[15] Calvin Haas. JPEGsnoop - JPEG file decoding utility. http://www.

impulseadventure.com/photo/jpeg-snoop.html.

[16] J. He, Z. Lin, L. Wang, and X. Tang. Detecting doctored JPEG images via
DCT coefficient analysis. In Proc. European Conference on Computer Vision,
volume 3593, pages 423–435, May 2006.

[17] G. E. Healey and R. Kondepudy. Radiometric CCD camera calibration and
noise estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
16(3):267–276, March 1994.

[18] M. K. Johnson and H. Farid. Exposing digital forgeries by detecting inconsis-
tencies in lighting. In Proc. ACM Multimedia and Security Workshop, pages
1–10, New York, NY, USA, 2005.

[19] M. K. Johnson and H. Farid. Exposing digital forgeries through chromatic
aberration. In Proc. ACM Multimedia and Security Workshop, pages 48–55,
Geneva, Switzerland, 2006.

[20] M. K. Johnson and H. Farid. Exposing digital forgeries in complex lighting
environments. IEEE Trans. on Information Forensics and Security, 2(3):450–
461, September 2007.

[21] M. Kirchner and R. Böhme. Hiding traces of resampling in digital images.
IEEE Trans. on Information Forensics and Security, 3(4):582–592, December
2008.

[22] M. Kirchner and R. Böhme. Synthesis of color filter array pattern in digital
images. In Proc. SPIE-IS&T Electronic Imaging: Media Forensics and Security,
volume 7254, February 2009.

[23] E. Y. Lam and J. W. Goodman. A mathematical analysis of the DCT coefficient
distributions for images. IEEE Trans. on Image Processing, 9(10):1661–1666,
October 2000.

[24] J. Li and R. M. Gray. Text and picture segmentation by the distribution analysis
of wavelet coeffcients. In Proc. IEEE Int. Conference on Image Processing,
pages 790 – 794, October 1998.

[25] A. W. C. Liew and H. Yan. Blocking artifacts suppression in block-coded images
using overcomplete wavelet representation. IEEE Trans. on Circuits Systems

for Video Technology, 14(4):450–461, April 2004.

[26] W. S. Lin, S. K. Tjoa, H. V. Zhao, and K. J. Ray Liu. Digital image source
coder forensics via intrinsic fingerprints. IEEE Trans. on Information Forensics

and Security, 4(3):460–475, September 2009.

185

[27] J. Lukáš, J. Fridrich, and M. Goljan. Detecting digital image forgeries using
sensor pattern noise. In Proc. SPIE, Electronic Imaging, Security, Steganogra-

phy, Watermarking of Multimedia Contents, volume 6072, pages 362–372, San
Jose, CA, USA, February 2006.

[28] J. Lukáš and J. Fridrich. Estimation of primary quantization matrix in double
compressed JPEG images. pages 5–8, August 2003.

[29] T. T. Ng, S. F. Chang, J. Hsu, L. Xie, and M.P. Tsui. Physics-motivated
features for distinguishing photographic images and computer graphics. In
Proc. ACM Multimdedia, pages 239–248, Singapore, 2005.

[30] T. T. Ng, S. F. Chang, and Q. Sun. Blind detection of photomontage using
higher order statistics. In Proc. IEEE Int. Symp. Circuits Systems, volume 5,
pages V–688–V–691, Vancouver, BC, Canada, May 2004.

[31] M. Nizza and P. J. Lyons. In an Iranian image, a missile too many. New York
Times News Blog, July 2008. http://thelede.blogs.nytimes.com/2008/07/
10/in-an-iranian-image-a-missile-too-many/.

[32] T. Pevný and J. Fridrich. Detection of double-compression in JPEG images
for applications in steganography. IEEE Trans. on Information Forensics and

Security, 3(2):247–258, June 2008.

[33] A. C. Popescu and H. Farid. Statistical tools for digital forensics. In Proc. 6th

Int. Workshop Information Hiding, pages 128–147, Toronto, Canada, 2004.

[34] A. C. Popescu and H. Farid. Exposing digital forgeries by detecting traces of
resampling. IEEE Trans. on Signal Processing, 53(2):758–767, February 2005.

[35] A. C. Popescu and H. Farid. Exposing digital forgeries in color filter array inter-
polated images. IEEE Trans. on Signal Processing, 53(10):3948–3959, October
2005.

[36] J. R. Price and M. Rabbani. Biased reconstruction for JPEG decoding. IEEE
Signal Processing Letters, 6(12):297–299, December 1999.

[37] A. Said and W.A. Pearlman. A new fast and efficient image codec based on
set partitioning in hierarchical trees. IEEE Trans. on Circuits and Systems for

Video Technology, 6:243–250, June 1996.

[38] G. Schaefer and M. Stich. UCID: an uncompressed color image database. In
Proc. SPIE: Storage and Retrieval Methods and Applications for Multimedia,
volume 5307, pages 472–480, 2003.

[39] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still im-
age compression standard. IEEE Signal Processing Magazine, 18(5):36 –58,
September 2001.

186

[40] M. Stamm and K.J.R. Liu. Blind forensics of contrast enhancement in digital
images. In Intl. Conference on Image Processing, pages 3112–3115, Oct. 2008.

[41] M. C. Stamm, W. S. Lin, and K. J. R. Liu. Forensics vs. anti-forensics: A deci-
sion and game theoretic framework. In Proc. IEEE Int. Conference on Acous-

tics, Speech, and Signal Processing, pages 1749–1752, Kyoto, Japan, March
2012.

[42] M. C. Stamm, W. S. Lin, and K. J. R. Liu. Temporal forensics and anti-
forensics in digital videos. to appear in IEEE Trans. on Information Forensics

and Security, 2012.

[43] M. C. Stamm and K. J. R. Liu. Forensic detection of image tampering using
intrinsic statistical fingerprints in histograms. In Proc. APSIPA Annual Summit

and Conference, October 2009.

[44] M. C. Stamm and K. J. R. Liu. Forensic detection of image manipulation using
statistical intrinsic fingerprints. IEEE Trans. on Information Forensics and

Security, 5(3):492 –506, September 2010.

[45] M. C. Stamm and K. J. R. Liu. Forensic estimation and reconstruction of a
contrast enhancement mapping. In Proc. IEEE Int. Conference on Acoustics,

Speech, and Signal Processing, pages 1698 – 1701, March 2010.

[46] M. C. Stamm and K. J. R. Liu. Wavelet-based image compression anti-forensics.
In Proc. IEEE Int. Conference on Image Processing, pages 1737 – 1740, Septem-
ber 2010.

[47] M. C. Stamm and K. J. R. Liu. Anti-forensics for frame deletion/addition in
MPEG video. In Proc. IEEE Int. Conference on Acoustics, Speech, and Signal

Processing, pages 1876 – 1879, Prague, Czech Republic, May 2011.

[48] M. C. Stamm and K. J. R. Liu. Anti-forensics of digital image compression.
IEEE Trans. on Information Forensics and Security, 6(3):1050 –1065, Septem-
ber 2011.

[49] M. C. Stamm, S. K. Tjoa, W. S. Lin, and K. J. R. Liu. Anti-forensics of JPEG
compression. In Proc. IEEE Int. Conference on Acoustics, Speech, and Signal

Processing, pages 1694 – 1697, March 2010.

[50] M. C. Stamm, S. K. Tjoa, W. S. Lin, and K. J. R. Liu. Undetectable im-
age tampering through JPEG compression anti-forensics. In Proc. IEEE Int.

Conference on Image Processing, pages 2109 – 2112, September 2010.

[51] A. Swaminathan, M. Wu, and K.J.R. Liu. Optimization of input pattern for
semi non-intrusive component forensics of digital cameras. In Proc. IEEE Int.

Conference on Acoustics, Speech, and Signal Processing, pages II–225 –II–228,
Honolulu, HI, April 2007.

187

[52] A. Swaminathan, M. Wu, and K.J.R. Liu. Digital image forensics via intrinsic
fingerprints. IEEE Trans. on Inform. Forensics Security, 3(1):101–117, March
2008.

[53] A. Swaminathan, Min Wu, and K.J.R. Liu. Nonintrusive component forensics
of visual sensors using output images. IEEE Trans. on Information Forensics

and Security, 2(1):91 –106, March 2007.

[54] G. Valenzise, V. Nobile, M. Taglisacchi, and S. Tubaro. Countering JPEG
anti-forensics. In Proc. IEEE Int. Conference on Image Processing, Brussels,
Belgium, September 2011.

[55] W. Wang and H. Farid. Exposing digital forgeries in video by detecting double
MPEG compression. In Proc. ACM Multimedia and Security Workshop, pages
37–47, Geneva, Switzerland, 2006.

[56] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Trans. on Image

Processing, 13(4):600 –612, April 2004.

[57] S. Ye, Q.n Sun, and E.-C. Chang. Detecting digital image forgeries by mea-
suring inconsistencies of blocking artifact. In Proc. IEEE Int. Conference on

Multimedia Expo, pages 12–15, 2007.

[58] G. Zhai, W. Zhang, X. Yang, W. Lin, and Y. Xu. Efficient image deblocking
based on postfiltering in shifted windows. IEEE Trans. on Circuits Systems

Video Technology, 18(1):122–126, January 2008.

[59] S. Zhu and K. K. Ma. A new diamond search algorithm for fast block-matching
motion estimation. IEEE Trans. on Image Processing, 9:287–290, February
2000.

188

