
ABSTRACT

Title of dissertation: WAVEFORM DESIGN
AND NETWORK SELECTION
IN WIDEBAND SMALL CELL NETWORKS

Yu-Han Yang, Doctor of Philosophy, 2013

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical and Computer Engineering

The explosion in demand for wireless data traffic in recent years has triggered

rapid development and pervasive deployment of wireless communication networks.

To meet the exponentially increasing demand, a promising solution is the concept

of wideband small cells, which is based on the idea of using broader frequency band-

width and employing more efficient radio frequency resource reuse by dense de-

ployment of wideband, short-range, low cost and low power base-stations. Broader

bandwidth provides substantial degrees of freedom as well as challenges for system

design due to the abundant multipaths and thus interference in high speed systems

under large delay spread channels. Reducing the transmission range and increasing

the number of cells permit better spatial reuse of spectrum. With the proliferation

of wideband small cells, the strategy of selection among multiple networks has sig-

nificant impacts to the performance of users and to the load balance of the system.

In this dissertation, we address these problems with a focus on waveform design and

network selection.



In time-reversal communication systems, the time-reversal transmit waveform

can boost the signal-to-noise ratio at the receiver with simple single-tap detection

by utilizing channel reciprocity with very low transmitter complexity. However, the

large delay spread gives rise to severe inter-symbol interference when the data rate is

high, and the achievable transmission rate is further degraded in the multiuser down-

link due to the inter-user interference. We study the weighted sum rate optimization

problem by means of waveform design in the time-reversal multiuser downlink. We

propose a new power allocation algorithm, which is able to achieve comparable sum

rate performance to that of globally optimal power allocation. Further, we study

the joint waveform design and interference pre-cancellation by exploiting the sym-

bol information to further improve the performance by utilizing the information of

previous symbols. In the proposed joint design, the causal interference is subtracted

using interference pre-cancellation and the anti-causal interference can be further

suppressed by waveform design with more degrees of freedom.

The second part of this dissertation is concerned with the wireless access net-

work selection problem considering the negative network externality, i.e, the influ-

ence of subsequent users’ decisions on an individual’s throughput due to the lim-

ited available resources. We formulate the wireless network selection problem as a

stochastic game with negative network externality and show that finding the optimal

decision rule can be modelled as a multi-dimensional Markov decision process. A

modified value iteration algorithm is proposed to efficiently obtain the optimal de-

cision rule with a simple threshold structure, which enables us to reduce the storage

space of the strategy profile. We further investigate the mechanism design problem



with incentive compatibility constraints, which enforce the networks to reveal the

truthful state information. We analyze a data set of wireless LAN traces collected

from campus networks, from which we observe that the number of user arrivals is

approximately Poisson distributed; the session time and the waiting time to switch

network can be approximated by exponential distributions. Based on the analysis,

we formulate a wireless access network association game with both arriving strategy

and switching strategy and validate the effectiveness of the proposed best response

strategy.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the exponential increase of wireless devices such as smart-

phones and tablets has created an explosion of demand in indoor wireless data

traffic. To meet such an expanding demand, a promising solution is the concept

of wideband small cells, which is based on the idea of using broader frequency

bandwidth and employing more efficient radio frequency resource reuse by dense

deployment of wideband, short-range, low cost and low power base-stations.

It is well known that cell-size reduction is the simplest and most effective way

to increase system capacity [51]. Moreover, transmission in a short distance evi-

dently allows lower power-consumption at both base-stations and user equipments,

and hence increases the battery life of mobile handset devices. Wideband small

cells can further extend the coverage of macro-cells in indoor areas through the

deployment by users. Wideband small cells offer high quality data services to in-

door equipments by using prevailing broadband data access services (e.g., Digital

Subscriber Lines (DSL), cable, etc.) as a backhaul for users to connect to the In-

ternet, and therefore offload the traffic of indoor users from macro-cells. The traffic

1



offload based on users’ deployment of small cells is not only beneficial to end-users

due to better user experience, but also favorable for network operators because of

the potential enhancement of system capacity. Therefore, wideband small cells as

small-sized base-stations deployed in indoor environments are expected as the next

major performance expansion in the evolution of wireless communications.

Broader bandwidth provides substantial degrees of freedom as well as chal-

lenges for system design due to the severe interference in high speed communica-

tions under large delay spread channels. The traditional time-reversal (TR) wave-

form [103] is able to boost the signal-to-noise ratio at the receiver with very low

transmitter complexity in a severe multipath channel. Such a waveform is simply

the time-reverse of the channel impulse response which is transmitted by propagating

back through each multipath with channel reciprocity. In essence, the environment

is performing deconvolution on the fly for the system. It can collect most energy

of the multipaths to a single tap. The receiver complexity is hence very low due to

the one-tap detection, that is, the receiver detects the received signal using only one

sample instead of more complicated receive equalization.

The traditional time-reversal technique can be viewed as a simple matched-

filter of the multipath channel which maximizes the signal-to-noise ratio (SNR) at

the receiver when using single-tap detection. Such a waveform is optimal if only

one symbol is transmitted. However, when the symbol duration is smaller than the

channel delay spread, the symbol waveforms are overlapped and thus interfere with

each other. When the symbol rate is very high, such inter-symbol interference (ISI)

can be notably severe and causes crucial performance degradation [33,122]. Further,
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in multi-user downlink scenarios, the time-reversal base-station uses each user’s

channel impulse response as the user’s symbol waveform to modulate the symbols

intended for that user. Despite the inherent randomness of the channel impulse

responses, as long as they are not orthogonal to each other, which is almost always

the case, these waveforms will inevitably interfere with each other when transmitted

concurrently. Hence, the performance of TR transmission can be impaired and even

limited by the inter-user interference (IUI). Moreover, interference can also be caused

by incorporating multiple transmit antenna in the TR systems.

In a wideband environment, substantial degrees of freedom are available for

the transmitted waveforms to be designed to combat the interference. Based on

design criteria such as system performance, quality-of-service (QoS) constraints, or

fairness among users, the waveform design can be formulated as an optimization

problem with the transmitted waveforms as the optimization valuables. The basic

idea of waveform design is to delicately adjust the amplitude and phase of each tap

of the waveform based on the channel information, such that after convolving with

the channel, the received signal at the receiver retains most of the intended signal

strength and rejects or suppresses the interference as much as possible.

As to radio frequency reuse, reducing the network size and increasing the

number of networks is effective in spatial reuse of spectrum [4]. With the recent

proliferation of wireless devices and the ubiquity of wireless networks, users can

connect to WiFi wireless networks through hot-spots or access points (APs) in most

public areas. As the cellular networks usually have a broader range of coverage, the

WiFi networks are smaller in its reachable range but more densely deployed. More-

3



over, the development of femtocells [19] also arouses more choices for cellular service

subscribers. Therefore, when a user attempts to access a wireless network, often-

times he/she may encounter a decision to choose one of multiple wireless networks.

From a user’s viewpoint, the decision of network association can lead to different

quality of service during the session. From the perspective of a service provider,

better allocation of users can provide more efficient utilization of resources such as

signal power, temporal and spatial bandwidth.

In most current practical systems, the network association decision is often

made based on the instantaneous signal-to-noise ratio (SNR) criterion, i.e., a user

simply connects to the wireless network with the highest SNR. Such a strategy may

be a good heuristic but is not optimal due to following reasons. First, SNR does

not take into account the influence caused by other users, i.e., the negative network

externality [35,83], which means the negative effect on a user caused by other users

with the same strategy in a network. For example, the traffic congestion caused

by the vehicles that choose the same route delays each vehicle’s traveling time.

Thus, instead of SNR, the signal-to-interference-plus-noise ratio (SINR) should be

considered. However, these instantaneous criteria only reflect the current condi-

tion without considering the future utility, which can be significantly degraded if

subsequent users make the same decision. The wireless access network association

problem is becoming more and more important due to its frequent occurrence in

our daily life and the influence to efficient resource utilization.

4



1.2 Dissertation Outline and Contributions

From the above discussions, we can see that as wideband small cells are de-

ployed more and more to meet the growing demand of wireless data traffic, there are

many new challenges to the optimal system design. In this dissertation, we address

these problems with a focus on waveform design and network selection. The first

part of this dissertation is concerned with waveform design in time-reversal com-

munication systems from the perspective of base-stations. The second part, from

the perspective of users, is on the optimal strategy in wireless access network selec-

tion considering other users’ strategies. The rest of this dissertation is organized as

follows.

1.2.1 Near-Optimal Waveform Design for Sum Rate Optimization in

Time-Reversal Multiuser Downlink Systems (Chapter 2)

In this chapter, we study the weighted sum rate optimization problem by

means of waveform design in the time-reversal multiuser downlink where the receiver

processing is based on a single sample. Power allocation has a significant impact

on the waveform design problem. We propose a new power allocation algorithm

named Iterative SINR Waterfilling, which is able to achieve comparable sum rate

performance to that of globally optimal power allocation.

We further propose another approach called Iterative Power Waterfilling for

multiple data streams. Iterative SINR Waterfilling provides better performance

than Iterative Power Waterfilling in the scenario of high interference, while Itera-
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tive Power Waterfilling can work under multiple data streams. Simulation results

show the superior performance of the proposed algorithms in comparison with other

waveform designs such as zero-forcing and conventional time-reversal waveform.

1.2.2 Joint Waveform Design and Interference Pre-Cancellation for

Time-Reversal Systems (Chapter 3)

In Chapter 2, it is shown that waveform design can significantly improve the

system performance of TR systems. However, when the symbol rate is very high,

the severe ISI still limits the performance at high power region.

In this chapter, we study the joint waveform design and interference pre-

cancellation by exploiting the symbol information to further improve the perfor-

mance. In the proposed joint design, the causal ISI is subtracted by interference

pre-cancellation and the anti-causal ISI can be further suppressed by the waveform

design with the more abundant degrees of freedom. The transmitter utilizes the

information of previous symbols to enhance the signal quality while the receiver

structure remains simple. In the multi-user scenario, both the IUI and ISI can

be similarly categorized by its causality, and then be tackled accordingly by the

proposed joint design.

The resulting multi-user waveform design is a non-convex optimization prob-

lem, for which two iterative algorithms are proposed and both are guaranteed to

converge to suboptimal solutions. Simulation results validate the convergence be-

havior and demonstrate the remarkable performance improvement over the non-joint
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waveform design in Chapter 2.

1.2.3 Wireless Access Network Selection Game with Negative Net-

work Externality (Chapter 4)

A key problem in wireless access network selection is to study the rational

strategy considering the negative network externality, i.e, the influence of subsequent

users’ decisions on an individual’s throughput due to the limited available resources.

In this chapter, we formulate the wireless network selection problem as a stochastic

game with negative network externality and show that finding the optimal decision

rule can be modelled as a multi-dimensional Markov decision process (M-MDP).

A modified value iteration algorithm is proposed to efficiently obtain the optimal

decision rule with a simple threshold structure, which enables us to reduce the

storage space of the strategy profile.

Further, we also investigate a mechanism design problem with incentive com-

patibility constraints, which enforce the networks to reveal the truthful state infor-

mation. The formulated problem is a mixed integer programming problem which

in general lacks an efficient solution. Exploiting the optimality of substructures, we

propose a dynamic programming algorithm that can optimally solve the problem in

the two-network scenario. For the multi-network scenario, the proposed algorithm

can outperform the heuristic greedy approach in a polynomial-time complexity. Fi-

nally, simulation results are shown to validate the analysis and demonstrate the

effectiveness of the proposed algorithms.
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1.2.4 Wireless Network Association Game with Data-Driven Statis-

tical Modelling (Chapter 5)

In this chapter, we analyze a data set of wireless LAN traces collected from

campus networks, from which we observe that the user arrival distribution is ap-

proximately Poisson distributed; the session time and the waiting time to switch

network can be approximated by exponential distributions. Based on the data anal-

ysis, we formulate a wireless access network association game as an M-MDP with

both arriving strategy and switching strategy, where the best response strategy is

an approximate Nash equilibrium.

A modified value iteration algorithm is proposed to search the best response

strategy profile. Applying the proposed algorithm to the data-driven stochastic

model, the best response strategy is shown to achieve a better individual expected

utility while satisfying the individual rationality, and attain a near-optimal social

welfare performance compared to other strategies such as the centralized method

and the greedy algorithm.
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Chapter 2

Near-Optimal Waveform Design for Sum Rate Optimization in

Time-Reversal Multiuser Downlink Systems

As introduced in Chapter 1, the traditional time-reversal (TR) waveform [103]

is able to boost the signal-to-noise ratio at the receiver with very low transmitter

complexity in a severe multipath channel. Such a waveform is simply the time-

reverse of the channel impulse response which is transmitted by propagating back

through each multipath with channel reciprocity. The traditional TR waveform is

optimal if only one symbol is transmitted. When the symbol rate is high, large delay

spreads of the traditional TR waveform result in severe inter-symbol interference

(ISI) [31,33].

Several approaches have been proposed to suppress ISI. In [31], a zero-forcing

(ZF) waveform can be adopted to minimize the ISI, but ZF does not take the noise

into account. In [33], Emami et. al. improved the traditional time-reversal waveform

with the minimum mean squared error (MMSE) waveform which suppresses both

the ISI and noise.

Although the ZF and MMSE waveforms can successfully suppress the ISI and

hence improve the performance of TR systems, they only consider the single-user

scenario. In multiuser downlink communications, one transmitter broadcasts differ-
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ent data streams to many receivers at the same time. Since each receiver is only

interested in its own data stream, the unintended data streams introduce inter-user

interference (IUI) to each receiver. In multiuser communications, due to the low

complexity compared to nonlinear methods, linear transmit waveform design can be

adopted to enhance the intended signal and suppress the IUI to maximize the trans-

mission rate. Weighted sum rate is an important design criterion since weighting

coefficients provide prioritization among different users in various applications. For

example, the weights can be chosen as queue lengths to minimize the risk of buffer

overflows [14], and the equal weights can be used to maximize the achievable sum

rate corresponding to the system capacity.

In the literature, there are some prior works on sum rate optimization for

MIMO broadcast channels with linear preprocessing. Some of these works [25,43,94]

directly optimize the sum rate in the downlink, and some works [43, 91, 98] exploit

the uplink-downlink duality [17, 52, 87, 100] to iteratively optimize the sum rate.

Such an iterative solution based on virtual uplink first appeared in [80,81]. In [87],

the joint beamforming and power control solutions to the max-min SINR problem

are developed. Cai et. al. further consider the max-min SINR problem subject

to a weighted-sum power constraint in multi-cell downlink networks [17]. The ap-

proaches in [43] optimize the weighted sum rate under linear zero-forcing constraints

and greedy algorithms are proposed to allocate data streams to users. In [91], the

receiver is assumed to know the transmit power allocation, and thus, the receiver is

able to normalize the received signal with the transmit power allocation and the re-

sulting problem is shown to be convex. In [98], the weighted sum rate maximization
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is modelled into minimizing the product of MSE, and sequential quadratic program-

ming is used to locate a local optimum of the minimization. Most previous works on

beamforming for multiuser MIMO downlink channels assume flat fading and do not

consider the ISI introduced by multipath. ISI degrades the user’s achievable rate as

a self-interfering term proportional to its own transmit power. To the best of our

knowledge, the systems with single-tap detection considering ISI and IUI have not

been considered before. In order to tackle this problem, we propose a near-optimal

waveform design to maximize the weighted sum rate by simultaneously suppress-

ing the ISI and IUI. Pre-equalization for ISI and IUI is proposed in [2], where the

design criterion is MSE and thus the problems they considered are convex. In this

chapter, the waveform design in the multiuser downlink systems where the receiver

processing is based on a single tap is formulated and shown to be similar to the

downlink beamforming problem. Beamforming problems with the max-min SINR

criteria are convex [17, 87] and thus can be solved optimally, but beamforming for

weighted sum rate maximization is known to be a non-convex optimization prob-

lem. In tackling the non-convex sum rate maximization problem, d.c. (difference of

convex functions) programming has been applied in recent literature (e.g., [34, 56])

by exploiting the fact that the sum rate can be written as difference of convex func-

tions. In [56], Kha et. al. proposed an iterative algorithm in which the solution to a

convex optimization problem is calculated at each iteration, which is accomplished

by another iterative algorithm such as the interior point method. Thus, the overall

complexity of such a method is quite high. Other d.c. programming approaches

(e.g., [34]) claimed to be able to obtain the global optimum are mostly based on
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combinatorial optimization such as branch-and-bound global search and usually re-

quire demanding computational complexity. A practical approach is provided in [57]

to maximize weighted sum rate for MIMO-OFDM systems but each user has only

a single data stream. In this chapter, we further provide an efficient solution to the

weighted sum rate maximization problem for multiple data streams. For single data

stream, the proposed algorithm is shown to perform better than [57] in the scenario

of high interference.

The proposed algorithms are based on the well-known uplink-downlink dual-

ity, i.e., the waveform design for the downlink can be obtained using virtual uplink,

given any power allocation. However, the power allocation problem for sum rate

optimization is non-convex for either uplink or downlink. By exploiting the relation

between the allocated power and the SINR targets, we propose a power allocation

algorithm called Iterative SINR Waterfilling which can achieve comparable perfor-

mance to the globally-optimal power allocation. The essential idea of the proposed

scheme is to first allocate the SINRs to the users to maximize the weighted sum rate,

and with the allocated target SINRs, the corresponding power allocation can easily

be determined. For multiple data streams, we also propose an iterative power alloca-

tion algorithm called Iterative Power Waterfilling which is the multiple-data-stream

extension of the modified iterative waterfilling in [124]. Simulation results show that

both the proposed approaches significantly outperform traditional waveform designs

such as zero-forcing and time-reversal waveforms.

This chapter is organized as follows. In Section 2.1, the system model and

problem formulation are described. In Section 2.2, we introduce the proposed wave-
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Figure 2.1: The schematic diagram of the time reversal system.

form design which alternately optimizes between calculating the waveform and the

power allocation vector. The waveform design for multiple data streams is proposed

in Section 2.3. Finally, the numerical simulation in Section 2.4 illustrates the per-

formance compared with traditional methods, and conclusion is drawn in Section

2.5.

2.1 System Model and Problem Formulation

In the time reversal system [103], the receiver first sends an impulse signal,

which is then received by the transmitter as a channel impulse response. Utilizing

the channel impulse response, the transmitter forms the TR waveform and sends

data symbols using the TR waveform. Figure 2.1 shows the schematic diagram of

the time reversal system. In this chapter, we consider multiuser downlink multipath

channels with one transmitter and K users. The receive signal of the kth user at

time m, yk[m], can be written as

yk[m] =
∑
l

hk[m− l]s[l] + nk[m], (2.1)
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where s[m] is the transmit signal and hk[m] denotes the channel impulse response

of user k. The channel length of hk[m] is denoted by Lk, i.e., hk[m] = 0 for m < 0

and m ≥ Lk. Writing (2.1) in a matrix form, we have the receive signal vector of

the kth user as

yk = Hks+ nk = Hk

(
K∑
j=1

uj
√
pjxj

)
+ nk, (2.2)

where yk is a (2L − 1) × 1 vector with L = maxk Lk, uj is the transmit waveform,

pj is the transmit power allocated to user j, xj is the intended signal for user j, and

nk is the additive white Gaussian noise (AWGN) with mean zero and variance σ2.

In (2.2), Hk is a (2L − 1) × L Toeplitz matrix with each column vector being the

shifted version of {hk[m]}Lm=1, .

In the time-reversal communication system, user k estimates the received sig-

nal by only yk[L]. Let H
(l)
k denote the lth row of Hk, the symbol at time slot l for

user k as xk(l), and [nk]L as the Lth element of nk. The complete characterization

of the signal with ISI and IUI is given by

yk[L] = H
(L)
k uk

√
pkxk(L) +H

(L)
k

(
K∑

j=1,j ̸=k

uj
√
pjxj(L)

)

+
2L−1∑

l=1,l ̸=L

H
(l)
k

(
K∑
j=1

uj
√
pjxj(l)

)
+ [nk]L. (2.3)

Assume that user k only decodes its own current symbol xk(L) and considers the

interferences (IUI and ISI) as noise. Then the SINR of user k is given as

SINRDL
k =

uH
k R

(1)
k ukpk

uH
k R

(0)
k ukpk +

∑K
j=1,j ̸=k u

H
j Rkujpj + σ2

, (2.4)

where R
(1)
k = H

(L)H
k H

(L)
k , Rj = HH

j Hj, and R
(0)
k = Rk − R

(1)
k . The superscript
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DL denotes the downlink. The first term and the second term in the denominator

denote ISI and IUI, respectively.

In this chapter, we jointly design the waveform U = [u1, ...,uK ] and power

allocation vector p = [p1, ..., pK ]
T to maximize the weighted sum rate subject to a

total power constraint Pmax, i.e.,

PDL
Rate : max

p,U

K∑
k=1

αk log
(
1 + SINRDL

k

)
s.t. 1Tp ≤ Pmax,u

H
i ui = 1, pi ≥ 0,∀i, (2.5)

where αk denotes the rate weighting coefficient for user k, and 1 is an all-one vector

with K elements.

2.2 Iterative Algorithm for the Weighted Sum Rate Optimization

In this section, we develop an iterative algorithm for the weighted sum rate

optimization in multiuser downlink time-reversal system. Since the waveform design

structure is decoupled in the virtual uplink system and the uplink-downlink duality

[52, 87, 100] builds a bridge between the two systems, the proposed algorithm first

solves the waveform design and power allocation in the virtual uplink system, and

then transforms the solution into the original downlink problem.

The optimal power allocation problem for sum rate maximization is non-

convex either in downlink or virtual uplink. In general, solving the global optimum

for a non-convex problem requires an exhaustive search, which is computationally

impractical. Hence, we propose an algorithm to efficiently attain a satisfactory

near-optimal solution for the non-convex power allocation problem. We will show in
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Section 2.4 by simulations that the proposed algorithm can reach a solution which

is very closed to global optimum.

2.2.1 Uplink-Downlink Duality

As shown in (2.4), the SINR of every user depends on the waveforms of all

users, so all users’ waveforms have to be jointly designed at the same time. Thus, the

waveform design is complicated in the downlink system. With the uplink-downlink

duality [52, 87, 100], the downlink optimal waveform can be individually decided in

the virtual uplink with fixed power allocation.

The virtual uplink problem is constructed as follows.

PUL
Rate : max

q,U

K∑
k=1

αk log
(
1 + SINRUL

k

)
s.t. 1Tq ≤ Pmax,u

H
i ui = 1, qi ≥ 0,∀i, (2.6)

where q = [q1, ..., qK ]
T is the power allocation in the virtual uplink, the downlink

transmit waveform {uj}Kj=1 becomes the uplink receive waveform, and the uplink

SINR for user k is

SINRUL
k =

uH
k R

(1)
k ukqk

uH
k R

(0)
k ukqk +

∑K
j=1,j ̸=k u

H
k Rjukqj + σ2

, (2.7)

where qk is the transmit power of user k in the virtual uplink, and the superscript

UL denotes the virtual uplink. Examining the difference between (2.4) and (2.7),

we can see that SINRUL
k only depends on one user’s waveform uk, and thus the

waveform design structure is decoupled in the uplink with the solution given by the

generalized eigenvalue problem [95].
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By exploiting the fact that the SINR achievable regions are the same [100]

for the two dual problems, we develop an iterative algorithm to solve PDL
Rate by first

solving PUL
Rate. It is now well-known [87] that for given SINR targets {γk}Kk=1, the

minimum required total power for the downlink and its virtual uplink are the same.

On the other hand, given a sum-power constraint Pmax, the achievable SINR region

is the same for both the downlink and its virtual uplink. Therefore, the solution

for PUL
Rate is also the solution for PDL

Rate. Because the transmit waveforms {uj}Kj=1 in

PDL
Rate cannot be directly solved, the proposed algorithm iterates between computing

the waveforms {uj}Kj=1 and solving for the uplink power vector q. After the iteration

for virtual uplink is completed, the downlink power vector p is then calculated using

the waveforms {uj}Kj=1 and the virtual uplink power vector q.

Given a fixed power allocation, the optimal waveform design of {uj}Kj=1 can

be directly derived by leveraging the uplink-downlink duality. Based on this, we

can then focus on the design of power allocation. We propose a power allocation

algorithm to be employed in the iterative sum rate optimization algorithm. Due to

the non-convexity of the problem, to obtain the global optimum in general requires

exhaustive search. The proposed algorithm can attain a sub-optimum that is very

close to the global optimum in terms of weighted sum rate performance and thus

much better than traditional methods such as zero-forcing and time-reversal wave-

forms. In the following two subsections, we describe the waveform design and the

power allocation algorithm in detail.
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2.2.2 Individual Waveform Design

The SINRUL
k in (2.7) can also be written as

SINRUL
k =

qku
H
k R

(1)
k uk

uH
k

(
qkR

(0)
k +

∑
j ̸=k qjRj + σ2I

)
uk

, (2.8)

where only uk is involved and thus SINRUL
k can be optimized by choosing uk to be

the principle eigenvector of the generalized eigenvalue problem,

qkR
(1)
k uk = SINRUL

k

(
qkR

(0)
k +

∑
j ̸=k

qjRj + σ2I

)
uk, (2.9)

This SINR-maximizing waveform turns out to be the MMSE waveform

uMMSE
k = cMMSE

k

(
K∑
j=1

qjRj + σ2I

)−1

H
(1)H
k . (2.10)

Here, cMMSE
k is a constant such that the norm of uMMSE

k is normalized to unit.

This can be easily verified by substituting (2.10) into (2.9), and the corresponding

eigenvalue can be obtained as SINRUL
k = H

(1)
k

(
qkR

(0)
k +

∑
j ̸=k qjRj + σ2I

)−1

H
(1)H
k .

2.2.3 Power Allocation: Iterative SINR Waterfilling

Given fixed {uj}Kj=1, the problem PUL
Rate becomes solving the power allocation

vector q given a sum power constraint Pmax. It can be verified that this problem is

non-convex so the global optimal solution is difficult to search. Instead, our objective

of the power allocation algorithm is to efficiently obtain a near-optimal solution.

We propose a new power allocation algorithm called Iterative SINR Waterfill-

ing. The key feature of the proposed algorithm is that, instead of directly allocating

the power {qk}Kk=1, we first allocate the SINRs {γk}Kk=1 to maximize the weighted
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sum rate under the sum power constraint. And then with the allocated SINRs, the

power allocation of {qk}Kk=1 can be easily established. The conversion to SINR wa-

terfilling changes the objective function to be convex and the feasible region to be

non-convex. In the following, it will be seen that such conversion can better capture

the structure of interference. The SINR is expressed in terms of the power by

γk = SINRUL
k =

uH
k R

(1)
k ukqk

uH
k R

(0)
k ukqk +

∑
j ̸=k u

H
k Rjukqj + σ2

. (2.11)

Let D be a diagonal matrix with [D]kk = γk/u
H
k R

(1)
k uk, and

[Φ]kj =


uH
j Rkuj, k ̸= j

uH
k R

(0)
k uk, k = j

. (2.12)

On the other hand, rewriting (2.11), we can represent the power allocation vector q

in terms of {γk}Kk=1 by

q =
(
I−DΦT

)−1
Dσ, (2.13)

where σ is a K × 1 vector of all elements equal to σ2. With (2.13), the power

allocations {qk}Kk=1 can be obtained from the SINR targets {γk}Kk=1.

Then the weighted sum rate optimization problem in terms of {γk}Kk=1 can be

reformulated as

max
γ1,...,γK

K∑
k=1

αk log (1 + γk) , (2.14)

s.t. 1T
(
I−DΦT

)−1
Dσ ≤ Pmax, (2.15)

ρ
(
DΦT

)
< 1, (2.16)

where ρ(·) denotes the spectral radius. Inequality (2.15) denotes the sum power

constraint in terms of {γk}Kk=1. The feasibility condition (2.16) and the constraint
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that the obtained power {qk}Kk=1 are all non-negative are equivalent to each other.

The detailed proof can be found in [13, Theorem 2]. One direction can be shown

by observing that in (2.13),
(
I−DΦT

)−1
=
∑∞

i=0(DΦT )i if ρ
(
DΦT

)
< 1 (cf. [49,

p.301]), and the matrix DΦT is element-wise positive.

According to the Karush-Kuhn-Tucker (KKT) conditions, the optimum γk

must satisfy

γk =

(
αk

λtk
− 1

)+

, (2.17)

1T
(
I−DΦT

)−1
Dσ = Pmax, (2.18)

ρ
(
DΦT

)
< 1, (2.19)

where λ is the KKT multiplier and

tk =
uH
k R

(1)
k uk

γ2
k

1T
(
I−DΦT

)−1
Deke

T
k

(
I−DΦT

)−1
Dσ, (2.20)

and ek is the kth column of a K ×K identity matrix. The term tk is a function of

{γk}Kk=1, i.e., it implicitly captures the interference introduced by the SINR alloca-

tion. Next, in order to solve λ, we show the monotonicity of λ in the left hand side

of (2.18) and (2.19).

Lemma 1 Let Λ be a square diagonal matrix with positive diagonal elements, and

S be a square matrix with positive elements. Then ρ(ΛS) ≤ ρ(Λ)ρ(S).

Proof: Let x and y be the eigenvectors corresponding to the maximum eigen-

values of ΛS and Λ1/2SΛ−1/2, respectively, with ∥x∥ = 1, and ∥y∥ = ∥Λ1/2x∥. We
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have ∥y∥2 ≤ ρ(Λ)∥x∥2. Then,

ρ(ΛS) = xT (ΛS)x ≤ ρ(Λ1/2SΛ−1/2)∥y∥2

≤ ρ(S)ρ(Λ). (2.21)

Proposition 1 ρ(DΦT ) is monotonically decreasing with λ. 1T
(
I−DΦT

)−1
Dσ

is also monotonically decreasing with λ if ρ(DΦT ) < 1.

Proof: Assume λ̂ > λ. From (2.17), we have γ̂k ≤ γk and ρ(D̂D−1) ≤ 1. With

Lemma 1,

ρ(D̂ΦT ) = ρ(D̂D−1DΦT ) ≤ ρ(D̂D−1)ρ(DΦT )

≤ ρ(DΦT ). (2.22)

Thus, ρ(DΦT ) is monotonically decreasing with λ.

If ρ(DΦT ) < 1, then
(
I−DΦT

)−1
=
∑∞

r=0

(
DΦT

)r
(cf. [49, p.301]). We have

1T
(
I−DΦT

)−1
Dσ = 1T

∞∑
r=0

(
DΦT

)r
Dσ

≥ 1T

∞∑
r=0

(
D̂ΦT

)r
D̂σ. (2.23)

Thus, 1T
(
I−DΦT

)−1
Dσ is also monotonically decreasing with λ if ρ(DΦT ) < 1.

Since the γk in (2.17), ρ(DΦT ), and 1T
(
I−DΦT

)−1
Dσ are all monotonic

with λ, the bisection search can be applied to efficiently compute the λ such that

the power constraint is satisfied. In the one dimensional bisection search, the initial
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upper bound of λ can be set as maxk αk/tk since the SINR targets {γk}Kk=1 are all

zero for λ higher than this value. The lower bound can be set as a small positive

number, which corresponds to very large values of {γk}Kk=1.

Eqn. (2.17) is a waterfilling-like solution with a feasibility constraint (2.19)

and a nonlinear power constraint (2.18). The tk can be considered as a modification

term to the water level due to the effect of the interference. In solving the optimum

γk, we can first fix tk, and then SINR target γk is found by using bisection search

for λ and substituting λ into (2.17). The new γk is then used to update tk as in

(2.20). The procedure is repeated until convergence. The proposed Iterative SINR

Waterfilling is summarized in Table 2.1.

We can incorporate a memory term for γk to slow down the update and the

convergence can be improved. In the nth iteration, the γk(n) can be calculated by

γk(n) = βγnew
k (n) + (1 − β)γk(n − 1), where γnew

k (n) is the one obtained after the

bisection search and β is the forgetting factor with 0 < β < 1.

2.2.4 Iterative Sum Rate Optimization

The iterative sum rate optimization algorithm iterates between calculating the

waveforms {uj}Kj=1 using (2.10) and the power allocation q using Table 2.1 in the

virtual uplink. The iterative algorithm is not guaranteed to converge. However,

very fast convergence is almost always observed in the numerical simulation. When

the algorithm converges, the obtained solution is a fixed point of (2.17)-(2.20), i.e.,

the solution satisfies the KKT conditions. In case it does not converge or it takes a
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Table 2.1: Iterative SINR Waterfilling

(i) Given q, initialize γk with (2.11).

(ii) Loop:

1. Calculate tk using (2.20).

2. Bisection search λ with (2.17)-(2.19), i.e.,

(a) Set bisection upper bound λmax = maxk αk/tk,

and lower bound λmin = δ > 0.

(b) Loop:

Set λ = 1
2
(λmax + λmin).

Compute γk =
(

αk

λtk
− 1
)+

.

If ρ
(
DΦT

)
< 1 then

If 1T
(
I−DΦT

)−1
Dσ < Pmax then

λmax = λ.

else

λmin = λ.

else

λmin = λ.

Until |1T
(
I−DΦT

)−1
Dσ − Pmax| < ϵ.

3. With γk obtained in last step, compute q by (2.13).

Until q converges or the max. number of iterations is reached.

Table 2.2: Iterative Weighted Sum Rate Optimization Algorithm for Single Data

Stream

(i) Initialize qk = Pmax/K.

(ii) Loop (uplink optimization):

1. Calculate {uj}Kj=1 by (2.10).

2. Calculate q using Iterative SINR Waterfilling.

Until q and {uj}Kj=1 converges or the max. number of iterations

is reached.

(iii) Compute γk by (2.11).

(iv) Obtain downlink power vector p by (2.24).
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long time to converge, the algorithm stops when the maximum number of iterations

is reached. The solution obtained in each iteration is always feasible regardless

of convergence. Hence, after convergence or the maximum number of iterations is

reached, we can compute the corresponding achievable SINR targets {γk}Kk=1 and

the downlink power allocation p can then be obtained similar to (2.13), i.e.,

p = (I−DΦ)−1 Dσ. (2.24)

The proposed algorithm for the weighted sum rate optimization algorithm is sum-

marized in Table 2.2. After convergence or maximum number of iterations is

reached, we take the variables obtained at the last iteration as the solution. The

performance may be better if the iterative algorithm keeps track of all passing so-

lutions and chooses the best solution when the maximum number of iterations is

reached. However, keeping track of all passing solutions requires a heavy overhead

of space complexity but does not contribute much to the averaged performance due

to the rareness of the non-converging cases. We have conducted simulations and

verified that the performance difference is not perceivable. Hence, concerning the

complexity and performance tradeoff, we choose to use the variables obtained at the

last iteration instead of keeping track of all passing solutions.

The accuracy of using the virtual uplink to compute the solution of the down-

link is commented as follows. Given fixed transmit waveforms {uj}Kj=1, the power

allocation problems to minimize the required sum power in the uplink and the

downlink for achieving certain SINR targets are dual problems [87, 100]. As a con-

sequence, the achievable weighted sum rates of the uplink and the downlink under
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the same sum power constraint are exactly the same. The solution in the uplink

can be transformed into the downlink using (2.13), where the SINR targets are cal-

culated by the uplink powers using (2.11), to achieve exactly identical SINRs and

thus exactly the same weighted sum rate.

2.3 Multiuser MIMO Downlink with Multiple Data Streams

In MIMO time-reversal systems where multiple data streams are transmitted

to each user, the transmit waveforms of different data streams have a significant

impact on the achievable rates of all users. The proposed Iterative SINRWaterfilling

can only work for systems with single data streams. In this section, we first describe

the system model and then also develop an iterative algorithm for the waveform

design.

2.3.1 System Model

The transmitter is now equipped with Nt transmit antennas. Each of the K

users has Nr,k receive antennas. The transmitter is transmitting Mk data streams

to user k. The Nr,k × 1 receive signal vector of the kth user at time m, yk[m], can

be written as yk[m] =
∑

l Hk[m− l]s[l] + nk[m], where the Nt × 1 vector s[m] is

the transmit signal at time m and the Nr,k × Nt matrices {Hk[m]}L−1
m=0 denote the

MIMO channel impulse response of user k at time m. We assume each channel is
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L-tap. In a matrix form, the receive signal vector of the kth user is given by

yk = Hks+ nk

= Hk

(
Uk

√
Pkxk +

∑
j ̸=k

Uj

√
Pjxj

)
+ nk, (2.25)

where yk = [yT
k [1], ...,y

T
k [2L − 1]]T ∈ C(2L−1)Nr,k , and the Mk × 1 vector xk com-

prises Mk data streams intended for user k. The matrix Uk = [UT
k [1], ...,U

T
k [L]]

T ∈

CLNt×Mk is the transmit waveform for user k. The diagonal matrixPk = diag{pk1, ..., pkMk
}

is the power allocated to the Mk data streams of user k. nk ∈ C(2L−1)Nr,k denotes

the additive white Gaussian noise and each element of nk is with zero mean and

variance σ2
k. The channel Hk ∈ C(2L−1)Nr,k×LNt is a block-Toeplitz matrix in which

each sub-block Hk[m] ∈ CNr,k×Nt is the channel matrix of receiver k at time m, i.e.,

Hk =



Hk[1] 0 ... 0

Hk[2] Hk[1] ... 0

...
...

. . .
...

0 0 ... Hk[1]


, (2.26)

In the MIMO time-reversal system, users perform the single-tap detection by

considering only the receive signal vector at time L, i.e., yk[L]. Let H
(l)
k denote the

lth sub-block row of Hk, e.g., H
(L)
k = [Hk[L], ...,Hk[1]]. After processing yk[L] with

receive filter Vk, the complete characterization of the signal, ISI and IUI is given by

x̂k(L) = VH
k yk[L]

= VH
k H

(L)
k Uk

√
Pkxk(L) +VH

k H
(L)
k

(∑
j ̸=k

Uj

√
Pjxj(L)

)

+
∑
l ̸=L

VH
k H

(l)
k

(∑
j

Uj

√
Pjxj(l)

)
+VH

k nk[L]. (2.27)
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Assume that user k only decodes its own current symbol xk(L) and considers

the interferences (IUI and ISI) as noise. Then the rate of user k is given as

RDL
k = log det

(
I+VH

k H
(L)
k UkPkU

H
k H

(L)H
k VkX

−1
k

)
, (2.28)

where the superscript DL denotes downlink and the interference matrix

Xk = σ2
kV

H
k Vk +

∑
l ̸=L

VH
k H

(l)
k UkPkU

H
k H

(l)H
k Vk

+
∑
j ̸=k

∑
l

VH
k H

(l)
k UjPjU

H
j H

(l)H
k Vk. (2.29)

The second term of (2.29) is the ISI of user k, and the third term is the IUI from

other users’ signals.

In the following, we will jointly design the transmit waveforms of the K users

U = [U1, ...,UK ] and power allocation P = diag {P1, ...,PK} to maximize the

weighted sum rate
∑K

k=1 αkR
DL
k subject to a total power constraint Pmax, i.e.,

PDL
Rate : max

P,U

K∑
k=1

αkR
DL
k

s.t. tr(P) ≤ Pmax, (2.30)

where αk denotes the rate weighting coefficient for user k.

2.3.2 Uplink-Downlink Duality for Multiple Data Streams

In (2.28) and (2.29), all the waveforms {Uj}Kj=1 are involved in Rk, so the

waveform design is complicated in the downlink. With the uplink-downlink duality

for multiple data streams [52], the downlink optimal waveform can be found in the
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virtual uplink with fixed power allocation. The sum rate optimization problem in

the virtual uplink is constructed as follows.

PUL
Rate : max

Q,U

K∑
k=1

αkR
UL
k

s.t. tr (Q) ≤ Pmax (2.31)

where Q = diag {Q1, ...,QK} is the power allocation in the virtual uplink, the

downlink transmit waveform U is equivalent to the uplink receive waveform, and

the uplink transmission rate for user k is

RUL
k = log det

(
I+UH

k H
(L)H
k VkQkV

H
k H

(L)H
k UkY

−1
k

)
, (2.32)

where the superscript UL denotes the virtual uplink, and the interference matrix

Yk = σ2
kU

H
k Uk +

∑
l ̸=L

UH
k H

(l)H
k VkQkV

H
k H

(l)
k Uk

+
∑
j ̸=k

∑
l

UH
k H

(l)H
k VjQjV

H
j H

(l)
k Uk. (2.33)

By exploiting the fact that under MMSE receive filtering the SINR achievable

regions of the two dual problems are the same for multiple data streams [52], we

develop an iterative algorithm to compute the transmit waveform U and the up-

link power Q in the virtual uplink, and calculate the receive waveform V and the

downlink power P in the downlink. In the following two subsections, we describe

the waveform design and the power allocation algorithm in detail.

2.3.3 Individual Waveform Design for Multiple Data Streams

As mentioned in Section 2.3.2, under MMSE receive filtering the SINR achiev-

able regions of the two dual problems are the same [52]. Therefore, in this subsection
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we briefly introduce the MMSE receive filter.

Given the power allocation matrix P and transmit waveform U, the MMSE

receive filter for the downlink can be derived as

Vk =
(
H

(L)
k UkPkU

H
k H

(L)H
k +Xk

)−1

H
(L)
k Uk

√
Pk. (2.34)

Similarly, for the virtual uplink, given the power allocation Q and transmit filter V,

the MMSE receive filter is given by

Uk =
(
H

(L)H
k VkQkV

H
k H

(L)
k +Yk

)−1

H
(L)H
k Vk

√
Qk. (2.35)

2.3.4 Power Allocation for Multiple Data Streams: Iterative Power

Waterfilling

We introduce the proposed power allocation algorithm for multiple data streams.

This algorithm is the multiple-data-stream extension of the modified iterative wa-

terfilling in [124]. For multiple data streams, we cannot obtain the power allocation

vector by allocating the SINR targets since there may be multiple solutions satisfy-

ing the same SINR targets. Thus, we directly allocate the power allocation vector.

Given the transmit waveformsUk, the power allocation problem can be written

as

max
{Pk}

K∑
k=1

αkRk

s.t.
K∑
k=1

tr (Pk) ≤ Pmax,Pk ≥ 0, ∀k. (2.36)
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Taking derivative on the Lagrangian with respect to pkl, 1 ≤ l ≤ Mk, we have

αk

z−1
kl + pkl

− tkl = λ− µkl. (2.37)

where

zkl = eTl Φ
H
k,k,L

(
Xk +

Lk∑
m=1,m̸=l

pkmΦk,k,Leme
T
mΦ

H
k,k,L

)−1

Φk,k,Lel, (2.38)

and

tkl = αk

∑
i̸=L

eTl Φ
H
k,k,i

(
Xk +Φk,k,LPkΦ

H
k,k,L

)−1
Φk,k,LPkΦ

H
k,k,LX

−1
k Φk,k,iel

+
∑
j ̸=k

αj

∑
i

eTl Φ
H
j,k,i

(
Xj +Φj,j,LPjΦ

H
j,j,L

)−1
Φj,j,LPjΦ

H
j,j,LX

−1
j Φj,k,iel, (2.39)

where the Mk ×Mk matrix Φk,j,i is defined as VH
k H

(i)
k Uj.

According to the Karush-Kuhn-Tucker (KKT) conditions for (2.36), the opti-

mum pkl satisfies

pkl =

(
αk

λ+ tkl
− z−1

kl

)+

, (2.40)

K∑
k=1

Lk∑
l=1

pkl ≤ Pmax. (2.41)

From the complementary slackness, either
∑K

k=1

∑Lk

l=1 pkl = Pmax, λ > 0 or∑K
k=1

∑Lk

l=1 pkl < Pmax , λ = 0 should be satisfied. Since λ is monotonic with respect

to
∑

k,l pkl, we can first check whether
∑K

k=1

∑Lk

l=1 pkl > Pmax is satisfied for λ = 0.

If so, the value of λ satisfying
∑

k,l pkl = Pmax can be obtained via a one dimensional

bisection search, where the upper bound of λ can be set as maxk,l {αkzkl − tkl}, and

we choose a small positive value for the lower bound. Similar procedures can be

done for the case when λ = 0 and
∑

k,l pkl < Pmax. The proposed Iterative Power

Waterfilling is summarized in Table 2.3.
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Table 2.3: Iterative Power Waterfilling for Multiple Data Streams

(i) Given P

(ii) Loop:

1. Calculate tkl and zkl using (2.39) and (2.38).

2. Bisection search λ with (2.40) and (2.41), i.e.,

If
∑

k,l

(
αkt

−1
kl − z−1

kl

)+
< Pmax then

pkl =
(
αkt

−1
kl − z−1

kl

)+
.

else

(a) Set bisection upper bound λmax = max
k,l

{αkzkl − tkl},

and lower bound λmin = δ > 0.

(b) Loop:

Set λ = 1
2
(λmax + λmin).

Compute pkl =
(

αk

λ+tkl
− z−1

kl

)+
.

If
∑

k,l pkl < Pmax then

λmax = λ.

else

λmin = λ.

Until |
∑

k,l pkl − Pmax| < ϵ.

Until P converges or the max. number of iterations is reached.
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Table 2.4: Iterative Weighted Sum Rate Optimization Algorithm for Multiple Data

Streams

(i) Initialize Qk =
Pmax∑
j Mj

IMk
, Uk = some random matrix.

(ii) Loop :

1. Calculate V by (2.34).

2. Calculate Q using Iterative Power Waterfilling.

1. Calculate U by (2.35).

1. Calculate P using Iterative Power Waterfilling.

Until (U,Q,V,P) converges or the max. number of iterations

is reached.

2.3.5 Iterative Sum Rate Optimization for Multiple Data Streams

For multiple data streams, the sum rate optimization algorithm iterates be-

tween the virtual uplink (U and Q) and downlink (V and P). When computing

one of (U,Q,V,P), the other three variables are considered constant. Table 2.3

is applied for calculating the power allocation P, and the algorithm for computing

Q is similar. Different from the proposed algorithm for single data stream (Table

2.2), where the receive filter is simply a scalar and does not need to be updated, for

multiple data streams the calculation of P or U relies on V, and the calculation of Q

or V relies on U. Therefore, the algorithm has to iterate between the virtual uplink

and the downlink. After convergence or maximum number of iterations is reached,

we take the variables obtained at the last iteration as the solution and compute the

achievable sum rate accordingly. The algorithm is summarized in Table 2.4.

The global optimum of a non-convex problem can be obtained by exhaustive

search which, however, requires prohibitively high computational complexity. The
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solution of the proposed iterative waveform design is suboptimal since we tradeoff

the optimality with complexity. Simulation results show that such sub-optima can

still achieve a much better weighted sum rate performance than traditional methods

such as Block-Diagonalization (BD) [93] and ZF.

2.4 Numerical Simulation

In this section, we use numerical simulations to demonstrate the performance

of the proposed iterative sum rate optimization algorithms. In the simulation, each

path of the channel is assumed to be an i.i.d. complex Gaussian random variable

with zero mean and variance of 1
2L

per dimension.

The amount of ISI depends on the symbol rate. Thus, we introduce the dec-

imation ratio D, which represents the ratio of the symbol duration to the signal

sampling duration. Each element in y is a signal sample, and the data symbols

are transmitted every D signal samples. Clearly, higher D results in less ISI but

lower symbol rate. In other words, one symbol induces ISI to at most ⌊2(L− 1)/D⌋

other symbols. Therefore, with decimation ratio D, the channel matrix H can be

decimated by keeping only ⌊2(L − 1)/D⌋ + 1 rows and deleting the other rows for

simplicity.

For example, if L = 3 and D = 2, the decimated H then becomes

H =


h[0] 0 0

h[2] h[1] h[0]

0 0 h[2]

 .
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Figure 2.2: Sum rate performance comparison for a 2-user system with L = 8,

D = 2, α1 = α2 = 1, and M1 = M2 = 1.

Figure 2.2 shows the sum rate performance of a 2-user system with L = 8,

D = 2, α1 = α2 = 1. Each rate is averaged over 1000 channel realizations. TR

denotes the traditional time-reversal filter, i.e., uTR
k = cTR

k H
(1)H
k , where cTR

k is a

normalization constant such that ∥uTR
k ∥2 = 1; ZF denotes the zero-forcing waveform,

i.e., uZF
k = cZFk ([HT

1 , . . . ,H
T
K ]

T )†ẽk, where (·)† denotes the Moore-Penrose pseudo-

inverse operator, and ẽk =
[
0T ,0T , . . . ,0T , eTL,0

T , . . . ,0T
]T

, which is aK(2L−1)×1

vector with its kth vector as eL. Here with a slight abuse of notation, we denote

eL to be the Lth column of a (2L − 1) × (2L − 1) identity matrix. The 0 denotes

a (2L − 1) × 1 all zero vector. Therefore, ẽk has only one non-zero value at its

((2L− 1)(k − 1) + L)th element. cZFk is chosen to normalize the norm of uZF
k to be

1.
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We compare the proposed Iterative SINR Waterfilling with equal power allo-

cation and optimal power allocation in Figure 2.2. For the proposed algorithms, the

forgetting factor β is set to be 1/K. The maximum iteration number of Iterative

SINR Waterfilling is set to be 20. In this chapter, since we focus on demonstrating

the performance advantage of the proposed power allocation scheme, some parame-

ters of the proposed algorithms, such as the maximum number of iterations and the

forgetting factor β, are empirically chosen and the performance is already promis-

ing. Thus, we do not aim to further optimize these parameters. The equal power

allocation is to split the total power equally to each user, i.e., pk = Pmax/K. The

optimal power allocation is simulated by exhaustive search of the discretized power

variables, where the number of discrete levels of each power variable is set as 103.

The exhaustive search requires very high computational complexity, which is ex-

ponentially increasing in the number of variables as the number of discrete levels

increases.

From the figure, the proposed power allocation can improve the performance of

equal power allocation for all waveform designs, since the proposed Iterative SINR

Waterfilling is able to find sub-optima by taking into consideration the channel

gains. The improvement for the MMSE waveform is especially significant at high

power region. The MMSE waveform with the proposed Iterative SINR Waterfilling

performs almost the same as the globally-optimal power allocation. We also observe

that even with the MMSE waveform, which is optimal given any power allocation for

single data stream, the equal power allocation still saturates at high power region.

Note that since the sub-optimal waveforms TR and ZF do not change un-
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der different power allocation, these methods do not require iterations between the

waveform design and power allocation. For the MMSE with equal power allocation,

since the power allocation remains the same, the MMSE waveform does not need to

be updated accordingly. Therefore, these methods are not iterative and thus require

lower computational complexity compared to the proposed algorithm, which has

two levels of iterations.

It is well-known [32] that since TR only maximizes the received signal power

without considering the interference, it saturates at a lower rate, as shown in both

figures. ZF cancels the interference but sacrifices the received signal power resulting

in worse performance at low power region. MMSE can strike a balance between the

two by reducing the interference including ISI and IUI, while keeping a high received

signal power.

In Figure 2.3, the proposed Iterative SINR Waterfilling is compared with the

convex approximation using geometric programming (GP) [24], which approximates

the rate function log(1 + SINRk) as log(SINRk) in high SINR regime. With such

an approximation, the weighted sum rate function can be shown to be a posyn-

omial and the optimization problem becomes a geometric program, which can be

optimally solved via standard convex programming techniques. In the figure, for

K = 2, L = 8, and D = 3, since the interference is low and SINRk ≫ 1, the sum

rate optimization problem can be well approximated using the convex objective

function, and the performance of the proposed method is very close to the globally

optimal solution of the approximated convex optimization problem. For K = 4,

L = 8, D = 4, and K = 4, L = 8, D = 3, the higher interference from more
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Figure 2.3: Sum rate performance comparison of the proposed algorithm in Table

2.2 and the convex approximation using geometric programming (GP).

users causes more performance degradation to the GP method. This is because

the approximate objective function
∑

k log(SINRk) can be seen as the proportional

fairness criterion for SINRs and it deters some SINRk from being very small and

significantly decreasing the approximate objective function. On the contrary, the

original sum rate
∑

k log(1 + SINRk) is not impaired as much if some SINRk are

small, because most power can be allotted to other users with lower interference

and still makes good contribution to the sum rate. In other words, if some users’

interference is high, the original sum rate maximization can abandon these users

and allocate most power to the others. Such a consequence cannot arise in the

GP method. Hence, only when the interference is low for all users, the sum rate

optimization problem can be well approximated with the convex objective function.
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Figure 2.4: Convergence behaviors of the proposed sum rate optimization algorithm.

The performance gap between the proposed method and the GP method be-

comes larger as Pmax/σ
2 increases. This seems not to comply with the intuition that

the GP method can obtain higher accuracy of approximation with high Pmax/σ
2.

Instead, the GP approximation is less accurate when the available power is higher

since the interference is also higher. When Pmax/σ
2 is low, the noise is more domi-

nant than the interference, so the interference mitigation from power allocation has

less prominent influence on the sum rate. As Pmax/σ
2 increases, the interference

also increases. In a high interference scenario, the proposed algorithm can make

better use of the available power compared with the GP method, which is based on

a less accurate approximation. Therefore, the resulting advantage of the proposed

algorithm is more significant as Pmax/σ
2 increases. In this figure, we can also observe

that the performance gap for K = 4, L = 8, D = 3 between the two algorithms is

larger than the gap for K = 4, L = 8, D = 4 since the GP method allocates power
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Figure 2.5: Sum rate performance for difference maximum numbers of iterations.

based on a less accurate approximation when the interference is higher. Comparing

between K = 4, L = 8, D = 3 and K = 2, L = 8, D = 3, the proposed algorithm

can achieve a better sum rate performance when K increases, whereas GP instead

performs worse, which is again due to the ineffective approximation.

Figure 2.4 shows a typical convergence behavior of the proposed sum rate

optimization algorithm (Table 2.2). Monotonicity and very fast convergence are

almost always observed (typically about 3 to 12 iterations). The proposed sum rate

optimization algorithms with different maximum numbers of iterations are compared

in Figure 2.5. It can be seen that the sum rate performance is improved with more

iterations. The improvement is more significant for smaller maximum numbers of

iterations and becomes less noticeable for higher maximum numbers of iterations.

We have performed extensive (10,000 channel realizations) simulations to inspect

the convergence of the proposed algorithm. Over 99% of them converge within 100
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Figure 2.6: Sum rate performance comparison for different decimation ratio D using

the proposed algorithm in Table 2.2. The performance is normalized by D.

iterations, while the remaining less than 1% converge more slowly. Note that we

define the convergence as the rate improvement between two consecutive iterations

being within 10−6, i.e.,
∣∣(R(n+1) −R(n))/R(n)

∣∣ < 10−6. We observed that for those

cases with slow convergence, the rate still monotonically increases but the increase

is just too slow to converge within 100 iterations. Since we assume L-path multipath

channel with each path being a Gaussian, the complexity to locate the peculiarity

of these channels is very high.

In Figure 2.6, we compare the sum rate performance with different decimation

ratio D. Note that for fair comparison, the performance is normalized by 1/D which

reflects the frequency of channel usage. For smaller D, the transmission is conducted

more frequently but severer interference may occur due to the ISI. Similarly for

40



0 5 10 15 20 25
0

5

10

15

20

25

P
max

 / σ2 (dB)

S
um

 r
at

e 
(b

its
/c

ha
nn

el
 u

se
)

K = 2, N
t
 = 6, N

r,1
 = N

r,2
 = 2, L = 2

 

 

MMSE + Proposed Iterative Power Waterfilling
MMSE + Equal Power Allocation
BD + Equal Power Allocation
BD + Proposed Iterative Power Waterfilling
ZF + Equal Power Allocation
ZF + Proposed Iterative Power Waterfilling

Figure 2.7: Sum rate performance comparison for a 2-user system with Nt = 6,

Nr,1 = Nr,2 = 2, L = 2, and M1 = M2 = 2.

higher D, the ISI is reduced but the channel is utilized less frequently. From the

figure, we can see that at low SNR region, D = 1 attains the highest normalized

performance since at low SNR, the ISI is less prominent and the channel utilization

is more important to the normalized sum rate. On the other hand, at high SNR,

the ISI has a dominant effect and higher D can provide a better normalized sum

rate performance despite less frequent channel usage.

Figure 2.7 shows the sum rate performance of a 2-user system with L = 2,

α1 = α2 = 1, Nt = 6, Nr,1 = Nr,2 = 2, and M1 = M2 = 2. The proposed algorithm

(Table 2.4) is compared with BD [93] and ZF. For BD, the signal space of each user

is orthogonal to each other, i.e., Uk is in the null space of ISI and IUI. Thus, in order

for BD to find a feasible solution, the simulation parameters are chosen to satisfy
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Figure 2.8: Comparison of the two proposed algorithms with different number of

users. L = 4, Nt = 1, Nr,k = 1,∀k, Mk = 1, ∀k, and Pmax/σ
2 = 15 (dB).

LNt − (2L − 1)
∑

j ̸=k Nr,j − (2L − 1)Nr,k ≥ Mk, ∀k. As to ZF, the signal space of

each data stream is orthogonal to each other. Hence, ZF also has similar constraint

on the dimensions.

We compare the Iterative Power Waterfilling as in Section 2.3.4 with equal

power allocation in Figure 2.7. The equal power allocation is to split the total

power equally to each data stream, i.e., Pk =
Pmax∑
j Mj

IMk
. From the figure, it is clear

that the proposed power allocation outperforms equal power allocation for MMSE,

BD, and ZF. It is well-known that interference cancellation based methods, such as

BD and ZF, suffer from the noise enhancement and thus result in worse performance

than MMSE.

We compare the two proposed power allocation algorithms for single data
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Figure 2.9: Comparison of the two proposed algorithms. K = 4, L = 2, Nt = 1,

Nr,k = 1, ∀k, and Mk = 1,∀k.

stream with different number of users in Figure 2.8. The parameters are chosen

as Nt = 1, Nr,k = 1, ∀k, L = 4, and αk = 1, ∀k. From the figure, Iterative SINR

Waterfilling outperforms the Iterative Power Waterfilling when the number of users

is large. Figure 2.9 shows that Iterative SINR Waterfilling can achieve superior sum

rate at high SNR, where the parameters are chosen as K = 4, L = 2, Nt = 1,

Nr,k = 1, ∀k, and αk = 1,∀k. From Figures 2.8 and 2.9, it can be seen that Iterative

SINR Waterfilling outperforms Iterative Power Waterfilling in the scenario of high

interference. Intuitively, the SINR targets have direct influence on the sum rate

and allocating the SINR can better capture the impact of interference compared to

allocating the power.

In Figure 2.10, the proposed Iterative SINR Waterfilling is compared with
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Figure 2.10: Comparison of the proposed algorithm and equal power allocation for

sum rate versus channel uncertainty.
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equal power allocation. The channel uncertainty model for the kth user at time m

is given by ĥk[m] = hk[m] + ek[m], where ĥk[m] denotes the estimated channel coef-

ficient, hk[m] denotes the true channel with variance σ2
h, and ek[m] is the estimation

error with variance σ2
e . In this figure, we can see that when the channel uncertainty

is small, the proposed method can still outperform the equal power allocation. As

the channel uncertainty increases, the benefit of the proposed method over the equal

power allocation reduces, since the proposed method relies on the perfect channel

information to allocate the available power. When the channel uncertainty is very

high, the equal power allocation performs better because the proposed method allo-

cates the power according to the coefficients almost uncorrelated to the true channel.

Finally, we note that although we cannot prove the proposed iterative algo-

rithms converge to the global optimum, the simulation results show that the pro-

posed Iterative SINR Waterfilling still results in comparable performance to that of

the globally-optimal power allocation and thus outperforms other traditional meth-

ods.

2.5 Conclusion

In this chapter, we explored the weighted sum rate optimization problem by

transmit waveform design for the MIMO time-reversal multiuser downlink com-

munication systems where the receiver processing is based on a single sample. The

waveform design problem is shown to have a structure similar to the downlink beam-

forming problem with a self-interfering term induced by the ISI. In order to tackle the
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problem, we proposed a new power allocation scheme called Iterative SINR Water-

filling which, instead of directly allocating the power, the SINRs are first allocated to

maximize the weighted sum rate. With the allocated target SINRs, the correspond-

ing power allocation can be easily determined. For multiple data streams, Iterative

Power Waterfilling is further proposed. Iterative algorithms alternately optimize the

transmit waveform and the power allocation for each user. Both of the proposed sum

rate optimization algorithms significantly outperform other traditional approaches

such as zero-forcing and time-reversal waveforms. We also demonstrated that Iter-

ative SINR Waterfilling outperforms Iterative Power Waterfilling in the scenario of

high interference, e.g., large number of users or high SNR region. With the MMSE

waveform, Iterative SINR Waterfilling is shown to achieve near-optimal performance

by comparing with exhaustively-searched global optimum.
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Chapter 3

Joint Waveform Design and Interference Pre-Cancellation for

Time-Reversal Systems

In basic time-reversal (TR) communication systems [44,105], the time-reversed

channel impulse response serving as the transmit waveform is able to boost the sig-

nal strength in a large delay spread channel in broadband communication. After

the transmitted TR waveform convolves with the multi-path channel, the temporal

focusing effect [36,75] of the TR waveform re-collects the most of signal energy into a

single tap. Utilizing the channel reciprocity, such a time-reversed waveform is essen-

tially the matched-filter [78], which guarantees the optimal performance by virtue of

its capability of maximizing the signal-to-noise ratio (SNR). The TR transmission

technique only requires a very low complexity at the receiver since a simple one-tap

symbol estimation is performed. Thus, the TR transmission techniques have been

shown to be a promising solution to the energy-efficient and low-complexity green

wireless communication [44,105].

As introduced in Chapter 1, the basic idea of waveform design is to delicately

adjust the amplitude and phase of each tap of the waveform based on the channel

information, such that after convolving with the channel, the received signal at the

receiver retains most of the intended signal strength and rejects or suppresses the
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interference as much as possible. It can be shown that the mathematical structure

of waveform design is analogous to that of the precoder design in MISO systems,

since the taps in waveform design act as the beamforming coefficients of the trans-

mit antenna in the precoder design. In the literature, there have been many studies

investigating the problems of designing advanced waveforms to suppress the inter-

ference [2, 16, 31, 33, 55, 63, 122]. In [33], a minimum mean-square-error (MMSE)

waveform was proposed to suppress ISI and noise for a single-user scenario without

taking into account the rate back-off factor in the optimization and thus the wave-

form is suboptimal. A zero-forcing waveform for minimizing the sidelobes (ISI) was

considered in [31]. In [122], multi-user joint power allocation and waveform design

for sum rate optimization was investigated in downlink TR systems.

Besides the channel information, another important side information the trans-

mitter can exploit in the waveform design is the transmitted symbol information.

Theoretically, if the receiver interference is known to the transmitter, it is possible to

completely remove the interference by means of complicated coding techniques [29].

The interference is known to the transmitter since it can be derived from the trans-

mit waveforms, the multipath channels, and the information bits. For example, in a

single-user scenario, when a signal arrives at the receiver, the waveform of a symbol

induces ISI to the previous symbols as well as the following symbols. Given the

transmitted symbols, the causal part of ISI can be cancelled in advance in designing

the waveform of the current symbol. Such a design is analogous to the transmitter-

based interference pre-subtraction [114, 128] in the nonlinear precoding literature.

A notable distinction for TR communication systems is that only the causal part
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of interference can be cancelled while the anti-causal part of interference cannot be

cancelled and needs to be suppressed by the waveform design based on the channel

information.

In this chapter, we propose a joint waveform design and interference pre-

cancellation for TR communication systems. The single-user scenario permits a

closed-form solution of the joint waveform design. It is shown that the resulting

design pre-cancels the causal ISI and suppresses the anti-causal ISI. For the multi-

user scenario, similarly the interference (ISI and IUI) is categorized into causal

interference and anti-causal interference. The pre-cancellation filter design can be

easily determined once the multi-user waveform design is settled. Since the resulting

multi-user waveform design is non-convex, we propose two iterative algorithms to

suboptimally tackle the optimization problem. One approach is based on the alter-

nating optimization and the other is a gradient method [15]. We show that both

iterative algorithms are guaranteed to converge to local optimal solutions. Numer-

ical simulation is conducted to validate the convergence behavior of the proposed

iterative algorithms and demonstrate the performance of the joint design.

The rest of the chapter is organized as follows. In Section 3.1, the system

model of the TR communication system is introduced in detail. The joint waveform

design and interference pre-cancellation for the single-user scenario is described in

Section 3.2, and the multi-user scenario is further depicted in Section 3.3, where the

two iterative algorithms are proposed. In Section 3.4, simulation results are shown

to demonstrate the performance. Finally, we draw the conclusion in Section 3.5.
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kŝ
g1

gK

+

...

...

Figure 3.1: Block diagram of waveform design for the multi-user downlink TR sys-

tem.

3.1 System Model

In the basic time-reversal system [44, 105], a user periodically sends a known

sequence of waveforms to the base-station, which then estimates the channel impulse

response using the received signal. Based on the channel impulse response, the

base-station simply uses the time-reversed version of the channel as the symbol

waveform to transmit data symbols. After receiving the signal, the user estimates

the transmitted symbol by looking at one sample of the received signal for each

symbol. As a consequence, the complexity at the user end can be very low while

most of the computational burden is shifted to the base-station. In this chapter,

we focus on the joint waveform design and interference pre-cancellation. Hence, for

simplicity perfect channel estimation and perfect synchronization are assumed, and

the extensions to the more general cases are possible but beyond the scope of this

chapter.

A multi-user downlink TR system consists of a base-station and K users. The

multipath channel between the base-station and the k-th user is denoted by hk, a

column vector of L elements where L is the maximum channel length among the K
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channels. Let sk denote an information symbol and gk be the transmit waveform

for user k, which can be a basic TR waveform or a more advanced waveform [122].

The length of gk is also L. As shown in Figure 3.1, the received signal yk at user k

is given by

yk = Hk

K∑
j=1

gjsj + nk, (3.1)

where Hk is the Toeplitz matrix of size (2L − 1) × L with the first column being

[hT
k 01×(L−1)]

T , and nk denotes the additive white Gaussian noise (AWGN). The

user estimates the symbol sk by scaling the sample yk[L] by αk, which corresponds

to the gain control at the receiver. Note that (3.1) represents the received signal

when symbols are transmitted further apart, i.e., with a symbol rate being at most

1/L times sampling rate 1/Ts. When the symbol rate is 1/(DTs) where D denotes

the rate back-off factor [33] and D < L, the received waveforms of different symbols

overlap with each other and give rise to the inter-symbol interference (ISI). Here

D is the rate back-off factor introduced to adjust the symbol rate in TR systems

[33, 44, 105]. To characterize the effect of ISI, the decimated channel matrix of size

(2LD − 1)× L, where LD = ⌊L−1
D

⌋+ 1, is defined as

H̃k =

LD−1∑
i=−LD+1

eLD+ie
T
L+iDHk, (3.2)

where el is the l-th column of a (2L− 1)× (2L− 1) identity matrix. In other words,

H̃k is obtained by decimating the rows of Hk by D, i.e., centering at the L-th row,

every D-th row of Hk is kept in H̃k while the other rows are discarded. The center
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row index of H̃k is LD. Then the sample for symbol estimation can be written as

yk[L] = hH
kLgksk[LD] + hH

kL

∑
j ̸=k

gjsj[LD] +

2LD−1∑
l=1,l ̸=LD

hH
kl

K∑
j=1

gjsj[l] + nk[L], (3.3)

where the hH
kl = eTl H̃k denotes the l-th row of H̃k, and sj[l] denotes user j’s l-th

symbol. It can be seen from (3.3) that the symbol sk[LD], the LD-th symbol of

user k, is interfered by the previous LD − 1 symbols and the later LD − 1 symbols

as well as other users’ K(2LD − 1) symbols, and also corrupted by the noise. The

design of waveforms {gk} has critical influence to the symbol estimation and thus

the system performance. If the basic TR waveforms are adopted, i.e., gk = hkL,

then the intended signal power for each user is maximized but without considering

the interference caused by other symbols. As such, the performance is limited by the

interference when the transmit power is high. Another possible waveform design is

zero-forcing (ZF) [64], which minimizes all the interference signal power but without

taking into account the intended signal power. Thus, the resulting SNR can be very

low and causes severe performance degradation especially when the transmit power

is relatively low. In our previous work [122], it has been shown that well-designed

waveforms can strike a balance between enhancing the intended signal power and

suppressing the interference power.

3.2 Single-User Joint Waveform Design and Interference Pre-cancellation

In this section, we discuss the joint waveform design and interference pre-

cancellation for the single-user case, which allows a closed form solution and provides

an insight to the joint design in the multi-user scenario. To simplify the notations,
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the user index for the single-user scenario is omitted. For example, the channel, the

waveform, and the gain are denoted as h, g, and α, respectively. In [122], a waveform

design is proposed to suppress the ISI by designing the transmit waveform g based

on the criterion of maximizing the signal-to-interference-plus-noise ratio (SINR).

Such a formulation usually involves solving an eigenvalue problem. In this chapter,

we consider minimizing mean-square error (MSE) as the design criterion. It can be

shown that in the single-user case, a closed form solution to the joint design can

be derived, and the minimum MSE waveform without interference pre-cancellation

also achieves the maximum SINR [42,122]. In the following, we will first discuss the

waveform design for minimizing MSE without interference pre-cancellation, and then

the pre-cancelling filter design. Finally, the joint waveform design and interference

pre-cancellation is analyzed and the closed form solution is derived.

3.2.1 Waveform Design without Interference Pre-Cancellation

The estimated symbol is obtained by scaling the sample y[L] by the gain α,

i.e., ŝ[LD] = αy[L]. Let the l-th row of the decimated channel matrix H̃ be denoted

by hH
l . The estimation MSE defined as E[∥ŝ[LD]− s[LD]∥2] is expressed as

MSE(α,g) = E
[
∥αy[L]− s[LD]∥2

]
= E[∥

(
αhH

LD
g − 1

)
s[LD] + αn[L] +

2LD−1∑
l=1,l ̸=LD

αhH
l gs[l]∥2]

= |αhH
LD

g − 1|2PS +

2LD−1∑
l=1,l ̸=LD

|αhH
l g|2PS + |α|2PN , (3.4)
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where s[l], l = 1, . . . , LD−1, LD+1, . . . , 2LD−1, denote the interfering symbols trans-

mitted adjacent to the intended symbol s[LD]. The symbol power PS = E[∥s[l]∥2],

∀l, is assumed to be unity for normalization. The noise is i.i.d. Gaussian dis-

tributed and hence PN = E[∥n[l]∥2], ∀l. To derive the minimum MSE (MMSE)

waveform g, we formulate the problem as minimizing MSE subject to a power con-

straint gHg = Pmax to rule out the trivial solution g = 0, the all-zero vector. The

Lagrangian function is given by

L(α,g, λ) = MSE(α,g) + λ(gHg − Pmax). (3.5)

Note that the optimization problem is nonconvex, and hence the KKT conditions

are necessary but may not be sufficient for the global optimal solution. However,

it can be shown that the solution to the KKT conditions is unique, which means

the unique solution is the global optimal solution. Taking the derivative of L with

respect to g and α, respectively, we have

∂L
∂α

= 0 ⇒ α =

(
2LD−1∑
l=1

|hlg|2 + PN

)−1

gHhLD
, (3.6)

and

∂L
∂g

= 0 ⇒ g = α∗

(
2LD−1∑
l=1

|α|2hlh
H
l + λI

)−1

hLD
, (3.7)

where (·)∗ denotes conjugation. From (3.7), we have

α∗gHhLD
= gH

(
2LD−1∑
l=1

|α|2hlh
H
l + λI

)
g. (3.8)

Also from (3.6), we have

gHhLD
= αgH

(
2L−1∑
k=1

hkh
H
k +

PN

Pmax

I

)
g (3.9)
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Thus, by comparing (3.8) and (3.9), we can solve the Lagrangian multiplier λ =

|α|2 PN

Pmax
. Substituting λ into (3.7) and using the power constraint gHg = Pmax, we

can have

αSU =

√√√√P−1
maxh

H
LD

(
2LD−1∑
l=1

hlhH
l +

PN

Pmax

I

)−2

hLD
, (3.10)

where the superscript SU denotes the single-user scenario. Substituting λ and (3.10)

into (3.7), we can obtain the optimal waveform

gSU = αSU−1

(
2LD−1∑
l=1

hlh
H
l +

PN

Pmax

I

)−1

hLD
. (3.11)

The resulting minimum MSE in the TR system is given by

MSESU = 1− hH
LD

(
2LD−1∑
l=1

hlh
H
l +

PN

Pmax

I

)−1

hLD
. (3.12)

Note that the phase of α can be chosen arbitrarily without altering the MSE. There-

fore, we choose a real-valued αSU as in (3.10). From the derivation above, we can

obtain the closed-form solution to the waveform design without interference pre-

cancellation given the channel matrix and the signal power to noise power ratio.

3.2.2 Interference Pre-cancellation

In TR systems, a user estimates the intended symbol by the sample of the

central peak of the receive signal. Therefore, the ISI can be identified as two parts:

the causal ISI and the anti-causal ISI. Due to the overlapping of the received signals

of consecutive symbols, one symbol can have influence to the ‘previous’ transmitted

symbols and also to the ‘future’ transmitted symbols. To compensate for the inter-

ference caused by the previous symbols, the current symbol can be subtracted by
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the interference before convolving with the transmit waveform, that is,

v[k] = s[k]− (hH
LD

g)−1

LD−1∑
l=1

(hH
LD+lg)v[k − l]. (3.13)

The operation in (3.13) can be considered as passing the symbols s[·] through a feed-

back filter bZF = (hH
LD

g)−1[01×LD
,−hH

LD+1g, . . . ,−hH
2LD−1g], where 01×LD

denotes

a 1× LD zero vector. The resulting MSE is then given by

MSEIPC = |αhH
LD

g − 1|2PV +

LD−1∑
l=1

|αhH
l g|2PV + |α|2PN , (3.14)

where PV , the average power of v[·], usually requires more power than PS since

additional power is needed for the second term in (3.13) even though the causal

interference part
∑2LD−1

l=LD+1 |αhH
l g|2 can be completely cancelled. Thus, the bene-

fit of performing interference pre-cancellation can be impaired by the performance

degradation caused by the additional power. Especially when the noise power is

more dominant than the interference power, the interference pre-cancellation can-

not provide much performance improvement and much of the transmit power would

be wasted in performing the pre-cancellation.

The problem of the increase of the transmit power can be resolved by apply-

ing the Tomlinson-Harashima Precoding (THP) [71, 99], which is to incorporate a

modulo-A component after the interference-precancellation at the transmitter, and

a modulo-A component before the symbol estimation at the receiver. The resulting

block diagram is depicted in Figure 3.2(a). The modulo-A operation, denoted as

modA(·), is to subtract element-wise the nearest integral multiple of A from the
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Figure 3.2: Block diagrams of joint waveform design and interference pre-

cancellation for a single-user TR system.

input such that each element of the output is in [−A
2
, A
2
), i.e., for an input v,

modA(v) = v − A

⌊
v

A
+

1

2

⌋
, (3.15)

where ⌊·⌋ is the floor operator, which returns the highest integer that is lower or

equal to the input value. Note that for complex value, the modulo-A operator applies

to both the real and the imaginary parts independently. With different constellation

size of the symbol modulation (e.g., QPSK, 16-QAM, or 64-QAM), the parameter

A can be chosen accordingly to minimize the modulo loss which will be explained

in detail in Section 3.2.4.
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3.2.3 Joint Waveform Design and Interference Pre-cancellation

The modulo-A component imposes nonlinearity to the design of the feedback

filter b. The nonlinear part can be moved to the outermost of the system design

such that the converted system in Figure 3.2(b) is equivalent to the original system

in Figure 3.2(a) [30, 85, 112], where a and a′ denote integral multiples of A such

that the outputs of the modulo components are within the proper range. We can

focus on minimizing the MSE of the linear part of the system, i.e., MSEIPC =

E[∥û − u∥2], where the superscript IPC denotes interference pre-cancellation, u

denotes the symbol after adding a to the original input s, and û is the symbol

before adding a′ for the estimated symbol ŝ. The MSE is given by

MSEIPC(g,b, α) = |α|2
LD−1∑
l=1

|hH
l g|2PV + |αhH

LD
g − 1|2PV

+

2LD−1∑
l=LD+1

|αhH
l g − b[l]|2PV + |α|2PN , (3.16)

where PV is the average power of the modulo output. The first term, |α|2
∑LD−1

l=1 |hH
l g|2PV ,

is the anti-causal interference caused by the symbols transmitted after the current

symbol. The third term,
∑2LD−1

l=LD+1 |αhH
l g−b[l]|2PV , is the causal interference caused

by the symbols transmitted before the current symbol. Our goal of the joint wave-

form design and interference pre-cancellation is to jointly determine the parameters

b, g and α such that the MSE is minimized. It is clear that the optimal b[l] should

be chosen such that

b[l] =


αhH

l g, l = LD + 1, . . . , 2LD − 1,

0, otherwise.

(3.17)
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Substituting (3.17) into (3.16) and setting PV = 1 for normalization, we can solve the

problem of MSE minimization subject to a transmit power constraint by a similar

analysis as in (3.5)-(3.10). The optimal α and g is given by

αIPC =

√√√√P−1
maxh

H
LD

(
LD−1∑
l=1

hlhH
l +

PN

Pmax

I

)−2

hLD
, (3.18)

gIPC = α−1

(
LD−1∑
l=1

hlh
H
l +

PN

Pmax

I

)−1

hLD
(3.19)

The resulting minimum MSE is given by

MSEIPC = 1− hH
LD

(
LD−1∑
l=1

hlh
H
l +

PN

Pmax

I

)−1

hLD
. (3.20)

Examining the difference between (3.11) and (3.19), we can see that gIPC takes into

account only the anti-causal ISI, which comprises the 1st to the (LD − 1)-th rows

of the decimated channel matrix H̃. The causal ISI, i.e., the (LD + 1)-th to the

(2LD−1)-th rows, are not considered in gIPC since they can be pre-cancelled by the

feedback filter b. The difference between the resulting MMSEs in (3.12) and (3.20)

also demonstrates such an effect.

The design of the optimal parameters can be summarized as follows. First, the

receiver gain αIPC is determined by (3.18). Then the waveform gIPC is designed to

suppress the anti-causal interference using (3.19) given αIPC. Finally, the coefficients

of the feedback filter b for interference pre-cancellation is obtained by (3.17) given

gIPC and αIPC.
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3.2.4 Bit Error Rate Analysis

The performance of the joint waveform design and interference pre-cancellation

can be analyzed by considering several losses of incorporating the THP, including

power loss, modulo loss, and shaping loss [37,127]. The power loss is due to the fact

that the modulo output still requires higher power PV than the symbol power PS.

Since the modulo operation changes the constellation to be repeated over the whole

space and such a change shrinks the decision region of those symbols at the boundary

of the constellation, when those boundary symbols are transmitted, the received

symbols may be misinterpreted as wrong symbols and modulo loss occurs. Finally,

the shaping loss happens when the distribution of the transmit signal becomes non-

Gaussian since information-theoretically the optimal input distribution is Gaussian

while the modulo operation generally produces a uniform distributed signal. In

the TR system, the output of the modulo operation is passed though the transmit

waveform, which considerably randomizes the distribution and tends to give rise to a

Gaussian-like distribution. Hence, in the following analysis, we neglect the shaping

loss and focus on the power loss and modulo loss.

The output of the modulo operation is uniformly distributed when the inter-

ference to be pre-cancelled is large enough. Considering both in-phase and quadra-

ture components of v[·], we can have PV = 2A2

3
, where A is the modulo operation

size. The optimal choice of A depends on the constellation size [96]. For example,

A =
√
2 for QPSK and the power loss is 4/3 ≈ 1.25dB. As discussed above, the

modulo loss occurs when the boundary symbols are transmitted, and thus depends
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on the constellation size. The bit error rate for QPSK can be approximated by

PQPSK
b ≈ 2Q

√ 1√
2
P−1
loss

PISI + σ2

−Q

3

√
1√
2
P−1
loss

PISI + σ2

+Q

5

√
1√
2
P−1
loss

PISI + σ2

− . . . ,

(3.21)

where PISI = PV

∑LD−1
l=1 |hH

l g|2. For higher order constellation such as 16-QAM or

64-QAM, the analysis can be derived similarly.

3.3 Multi-User Joint Waveform Design and Interference Pre-cancellation

In the joint waveform design and interference pre-cancellation for the single-

user TR system, the causal ISI is pre-cancelled by the feedback filter and anti-causal

ISI is suppressed by the waveform design. In the multi-user downlink TR system,

we can leverage a similar idea of pre-cancelling both the causal ISI and the causal

IUI by feedback filters, and suppressing both the anti-causal ISI and the anti-causal

IUI by the multi-user waveform design.

Figure 3.3(a) depicts the block diagram of a multi-user TR system with inter-

ference pre-cancellation. The wide arrows denote the flow of a vector of data streams

as the extension of Figure 3.2. The feedback filter takes a vectored input and turns

out a vectored output. In the waveform part, each data stream is convolved with its

waveform gk and the outputs are additively aggregated together to be the transmit

signal.

To determine the causality of IUI and ISI, the ordering of users for inter-

ference pre-cancellation has to be settled. Finding the optimal ordering requires

exhaustive search over all possible permutations and is computationally prohibitive.
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Figure 3.3: Block diagrams of joint waveform design and interference pre-

cancellation for a multi-user TR system.
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Moreover, as will be shown in Section 3.4, the overhead of searching may not be

worthy since the amount of interference with different orderings differs only in the

current symbols, which contribute a relatively small portion to the overall interfer-

ence. In the following, we denote the index of a user as its ordering. For user k’s

LD-th symbol, sk[LD], the causal interference is caused by the symbols including

{sj[l], l < LD, ∀j} and {sj[LD], j < k}; the anti-causal interference is caused by the

symbols {sj[l], l > LD,∀j} and {sj[LD], j > k}. Figure 3.4 illustrates the causality

of interference for a multi-user system with K = 5 and LD = 5, and different causal-

ities are separated by dash lines. When the current symbol is s3[5], the symbols in

the bottom left part of Figure 3.4 serve as the causal interference to be pre-cancelled

by the feedback filter, and the symbols in the top right part of Figure 3.4 are the

anti-causal interference to be suppressed by the waveform design.

Similar to the single-user case, we consider the linear part of the equivalent

system in Figure 3.3(b). The MSE of user k in can be expressed as

MSEk =
K∑
j=1

LD−1∑
l=1

|αkh
H
klgj|2PV +

∑
j>k

|αkh
H
kLD

gj|2PV + |αkh
H
kLD

gk − 1|2PV

+
∑
j<k

|αkh
H
kLD

gj − bkj[LD]|2PV +
K∑
j=1

LD−1∑
l=1

|αkh
H
klgj − bkj[l]|2PV + |αk|2PN ,

(3.22)

where bkj[·] denotes the feedback filter of user k for pre-cancelling the interference

of user j’s data stream. In the following, we aim to jointly design the waveforms

{gk}, the feedback filters {bk}, and the the gains {αk} such that the total MSE is

minimized. It is clear that the optimal coefficients of the feedback filter are given
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Figure 3.4: Illustration of the causality of interference caused by symbols of users.

by

bkj[l] =


αkh

H
klgj, l = LD + 1, . . . , 2LD − 1, ∀j, or l = LD, j < k,

0, otherwise.

(3.23)

Substituting (3.23) into (3.22), we have

MSEk =
K∑
j=1

LD−1∑
l=1

|αkh
H
klgj|2PV +

∑
j>k

|αkh
H
kLD

gj|2PV

+ |αkh
H
kLD

gk − 1|2PV + |αk|2PN . (3.24)

It can be seen that user k’s optimal waveform gk relies on other users’ optimal

waveforms. Therefore, unlike the single-user case, the closed form global optimal

solution of the multi-user problem is difficult to find. Hence, we propose two iterative

algorithms to search for locally optimal solutions. One approach is an alternating
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optimization method and the other is a gradient method. The convergence of both

iterative algorithms can be guaranteed by showing the monotonicity of the objective

functions during the iterations.

3.3.1 Alternating Optimization Algorithm

The alternating optimization algorithm is to iteratively optimize over a re-

stricted subset of all variables [15]. In this proposed algorithm, we iteratively up-

date the waveforms {gk} and the gains {αk} to optimize the total MSE subject to a

power constraint. It will be shown that fixing one set of variables, optimization over

the other set of variables is a convex problem and the closed-form solution can be

derived. The total MSE in each iteration is non-increasing and thus the alternating

optimization algorithm is guaranteed to converge.

It is easy to optimize the gains {αk} given a set of fixed waveforms {gk} since

the total MSE
∑K

k=1 MSEk is a quadratic function of {αk}. We can consider the

first order condition, i.e., the first order derivative of the total MSE with respect to

αk equals zero. We can have

αk =

(∑
j≥k

|hH
kLD

gj|2 +
K∑
j=1

LD−1∑
l=1

|hH
klgj|2 +

PN

PX

)−1

gH
k hkLD

, ∀k. (3.25)

Next, we consider the optimization of the waveforms {gk} subject to a power

constraint, with a set of fixed gains {αk}. Directly taking the derivative of the

Lagrangian with respect to {gk} leads to an expression in terms of the Lagrange

multiplier λ associated with the power constraint. Solving λ, however, is quite

difficult and arouses the need for numerical search. Motivated by the technique in
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(3.6)-(3.11) where the Lagrange multiplier can be explicitly obtained, we propose to

keep the ratio between {αk} fixed and optimize the corresponding {gk} so that the

Lagrange multiplier can be solved explicitly. That is, instead of fixing {αk}, we fix

ᾱk = γ−1αk, for all k, where γ =
√∑

k |αk|2/Pmax, which means
∑

k |ᾱk|2 = Pmax,

and γ is considered as a variable in the optimization problem. The Lagrangian of

minimizing the total MSE subject to the power constraint, with variables γ and

gk, ∀k, is given by

L(g1, ...,gK , γ, λ) =
K∑
k=1

MSEk + λ

(
K∑
k=1

gH
k gk − Pmax

)
. (3.26)

Taking the first order derivative of L with respect to g∗
k, we have

gk = γ−1ᾱ∗
k

(∑
j≤k

|ᾱj|2hjLD
hH
jLD

+
K∑
j=1

LD−1∑
l=1

|ᾱj|2hjlh
H
jl +

λ

PX

I

)−1

hkLD
(3.27)

Taking the first order derivative of L with respect to γ, we have

γ =

(
K∑
k=1

ᾱ∗
kg

H
k hkLD

)(
K∑
k=1

(∑
j≤k

|ᾱjh
H
jLD

gk|2 +
K∑
j=1

LD−1∑
l=1

|ᾱjh
H
jlgk|2 +

PN

PX

|ᾱk|2
))−1

(3.28)

From (3.27), (3.28), and the power constraint
∑

k g
H
k gk = Pmax, we can have λ = PN .

By substituting γ and λ = PN into (3.27), the closed form solution of gk can be

obtained.

The proposed alternating optimization algorithm, summarized in Table 3.1, is

to fix one set of variables and optimize the other set of variables to decrease the total

MSE until convergence or the maximum number of iterations is reached. When the

waveforms {gk} are fixed, updating the gains {αk} can only reduce the total MSE

or keep it unchanged. Similarly, when the normalized gains {ᾱk} are fixed, updating
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Table 3.1: Alternating Optimization Algorithm for Multi-user Downlink Waveform

Design

(i) Initialize αk = 1, ∀k.
(ii) Loop :

1. Calculate waveforms : {gk} and γ by (3.27) and (3.28).

2. Calculate gains : {αk} by (3.25).

Until αk, {gk} and γ converge or the max. number of iterations is reached.

the waveforms {gk} also makes the total MSE non-increasing. Thus, it can be easily

seen that the proposed alternating optimization algorithm always converges since

the total MSE is always non-increasing during the iterations and the total MSE

is lower bounded by zero. Note that the converged solution may not be a global

optimum but it is a local optimum where none of the two optimization steps can

further improve the performance.

3.3.2 Gradient Algorithm

The gradient method, by iteratively updating the variables to the steepest di-

rection that decreases the objective function, is able to locate the global minimum

for convex functions, but only a local optimum for a wide class of non-convex func-

tions [15]. We propose to remove the dependence of {αk} by substitute (3.6) into

the MSE in (3.24) so that the gradient method can focus on updating {gk} only.

Then the resulting total MSE as a function of {gk} is given by

K∑
k=1

MSEk = PV

K∑
k=1

(
1− t−1

k |gH
k hkLD

|2
)
, (3.29)
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where

tk =
∑
j≥k

|hH
kLD

gj|2 +
K∑
j=1

LD−1∑
l=1

|hH
klgj|2 +

PN

PV

. (3.30)

It can be easily verified that the total MSE in (3.29) is non-convex in {gk}. The

gradient of gk can be obtained as

∆gk ,
∂

∂g∗
k

(∑
k

MSEk

)
= PV

(
−hkLD

hH
kLD

t−1
k +

k∑
j=1

|gH
j hjLD

|2hjLD
hH
jLD

t−2
j

+
K∑
j=1

LD−1∑
l=1

|gH
j hjLD

|2hjlh
H
jl t

−2
j

)
gk. (3.31)

The gradient algorithm is summarized in Table 3.2, where the waveforms are itera-

tively updated by

g
(n+1)
k = projC

[
g
(n)
k − δ(n)

∆g
(n)
k

∥∆g
(n)
k ∥2

]
. (3.32)

We choose the step size δ(n) to be the harmonic sequence 1
d
, d = 1, 2, . . . for its

good convergence behavior [15]. The projection operator projC is to project the

updated waveforms into the constraint set
∑K

k=1 g
H
k gk = Pmax by normalization.

In each iteration, the total MSE generated by the proposed gradient algorithm is

non-increasing. By the same argument that the sequence of the total MSE is non-

increasing and bounded below, the proposed gradient algorithm is guaranteed to

converge to a local minimum, where the gradient is zero.

3.4 Numerical Simulation

In this section, we perform numerical simulation to study the performance of

the proposed joint design. The Saleh-Valenzuela channel model for indoor environ-

ment is adopted to generate the instances of a multipath channel impulse response.
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Table 3.2: Gradient Algorithm for Multi-user Downlink Waveform Design

(i) Initialize gk = hkLD
, ∀k.

(ii) Loop:

(a) Calculate gradients : {∆gk} by (3.31).

(b) Update waveforms : {g(n)
k } by (3.32).

(c) Line search:

If
∑

k MSE
(n)
k >

∑
k MSE

(n−1)
k

d = d+ 1, δ(n) = 1
d
.

goto (b).

else

n = n+ 1.

end if

Until {gk} converge or the max. number of iterations is reached.

In Figure 3.5, we plot the equivalent channels, (g ∗ h), i.e., the composite effect

of the transmit waveform and the channel impulse response. Figure 3.5(a) shows

the equivalent channel of using pure waveform design, and Figure 3.5(b) shows

the equivalent channel of using joint waveform waveform design. Since the joint

waveform design only suppresses the anti-causal interference and the causal part

is pre-cancelled by the feedback filter, we can see that the causal interference is

untamed and significantly larger than the pure waveform design in Figure 3.5(a).

However, with the same degrees of freedom, the joint waveform design only needs

to suppress about half of the interference compared to the pure waveform design,

and it is able to achieve higher peak amplitude and better interference suppression

for the anti-causal interference.

Figure 3.6 and 3.7 show the single-user BER performance for different wave-

form design schemes when D = 1 and D = 3, respectively. ’Basic TR’ denotes the
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Figure 3.5: Equivalent channels for pure waveform design and joint waveform design.

traditional TR waveform, which is the time-reversed and conjugated version of the

channel impulse response. It can be seen that the joint waveform design can achieve

a remarkable performance gain at high SNR region for D = 1 compared to D = 3.

This is because when D is smaller, i.e., the symbol rate is higher, and when the

signal power is more dominant than the noise power, the interference is more severe

and the joint design has a substantial advantage under such a scenario. The theo-

retical analysis of the BER performance for the proposed joint design with D = 1 is

quite close to the simulated result. The theoretical BER of D = 1 is more accurate

than D = 3 due to the fact that the analysis is greatly based on the assumption

of a Gaussian distributed interference, and a smaller rate back-off factor results in

more interfering multipaths, which makes the distribution of the ISI more similar

to a Gaussian one.

A typical convergence behavior of the two proposed iterative algorithms is
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Figure 3.6: BER performance comparison for D = 1.
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Figure 3.7: BER performance comparison for D = 3.
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Figure 3.8: Convergence behavior of the two proposed iterative algorithms.

plotted in Figure 3.8 with K = 2, D = 2 and Pmax/PN = 18 dB. The average

number of convergence for the proposed alternating optimization algorithm is 10.34

at 0 dB and 26.88 at 18 dB. For the proposed gradient method, the average number

of iterations is 7.49 at 0 dB and 48.51 at 18 dB. When Pmax/PN is low, the noise

power dominates the interference power, and thus the waveform calculation is easier

since a user’s waveform should be close to the basic time-reversal waveform which

is based its own channel and irrelevant to others’. On the other hand, when the

noise power is low, the severe ISI and IUI greatly influence the performance, and a

user’s waveform has to take into account others’ waveforms to avoid the interference.

Therefore, high Pmax/PN region typically requires more iterations for the algorithms

to converge.

For both the alternating optimization algorithm and the gradient algorithm,

the ordering of users has to be determined first. As discussed in Section 3.3, finding
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the optimal ordering requires an exhaustive search. Heuristic algorithms for finding

a suboptimal user ordering, such as the ones in [68, 69], can be adopted. Let us

consider the initial step in the alternating optimization algorithm, the αk’s are

initialized to be the same, and by substituting the solutions of gk’s into the MSE in

(3.24), the resulting total MSE is given by

K∑
k=1

MSEk =
K∑
k=1

PV

(
1− hπkLD

T−1
πk
hπkLD

)
, (3.33)

where

Tπk
=
∑
j≤k

hπjLD
hH
πjLD

+
K∑
j=1

LD∑
l=1

hπj lh
H
πj l

+
PN

PV

I. (3.34)

We consider a greedy algorithm exploiting the fact that Tπk
does not depend on the

particular ordering of {πj, j ≤ k} for the first term in (3.34) and the second term is

the sum of all users’ causal ISI and does not rely on the overall ordering. Based on

this, once {πj, j > k} is determined, MSEk can be optimized by choosing πk. We

can sequentially choose πK , . . . , π1, i.e., the greedy {πG
k } can be determined by

πG
k = arg max

πk ̸∈{πG
j ,j>k}

hπkLD
T−1

πk
hπkLD

, for k = K,K − 1 . . . , 1. (3.35)

However, such a greedy approach is not globally optimal since first of all, the ob-

jective function in (3.33) is an approximation since we assume {αk} the same, and

secondly, even if the globally optimal {πj, j > k} can be found, the subsequent

global optimization of πk has to take into account all terms in (3.33) instead of

only hπkLD
T−1

πk
hπkLD

, but such optimization is quite involved and does not permit

a better solution other than the exhaustive search.
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In Figure 3.9 and 3.10, we compare the total MSE and the average BER

performance of the methods with K = 2 and D = 2. It can be seen that for the

total MSE, the alternating optimization algorithm performs slightly better than the

gradient method at the high power region while it performs a bit worse at the low

power region. However, such a difference does not appear obvious in the average

BER performance. The greedy ordering algorithm does not show any perceivable

advantage since the current symbols only contribute a small portion to the total

interference. For K = 4 and D = 4, the average BER and the total MSE are shown

in Figure 3.11 and 3.12. We can observe a similar comparison of the two algorithms

for the total MSE performance with a magnified difference. Specifically, for both

the total MSE and the average BER performance at the high power region, the

alternating optimization shows a noticeable advantage over the gradient algorithm.

At the low power region, the total MSE performance of the gradient method is

slightly superior than the alternating optimization algorithm, but such a difference

is imperceptible in the average BER performance.

3.5 Conclusion

In this chapter, we proposed the joint waveform design and interference pre-

cancellation for TR communication systems by exploiting the symbol information

available at the transmitter. It was shown that the optimal joint design is to pre-

cancel the causal interference by a feedback filter and to suppress the anti-causal

interference using the waveform. For the multi-user scenario, the causality of both
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Figure 3.9: Total MSE performance comparison for K = 2 and D = 2.
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Figure 3.10: Average BER performance comparison for K = 2 and D = 2.
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Figure 3.11: Total MSE performance comparison for K = 4 and D = 4.
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Figure 3.12: Average BER performance comparison for K = 4 and D = 4.
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ISI and IUI determines its similar role in the joint design. The resulting multi-user

waveform design is a non-convex optimization problem, for which we proposed two

iterative algorithms, including an alternating optimization algorithm and a gradient

method. Both algorithms can be guaranteed to converge to sub-optimal solutions.

Simulation results were shown to validate the convergence of the proposed algorithms

and demonstrate the effectiveness of the proposed joint design, especially in the high

interference regime. As possible future extensions, applications of the proposed joint

design to the multi-antenna scenarios can be attained by utilizing the idea of pre-

cancelling the causal interference and suppressing the anti-causal interference.
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Chapter 4

Wireless Access Network Selection Game with Negative Network

Externality

Nowadays, wireless network services such as Femtocells [19] and Wi-Fi access

points are widely deployed to provide Internet access in areas such as homes, offices,

airports, hotels, etc. While there may be multiple available wireless networks, a user

can only choose one to join. Figure 4.1 shows an example of the Wi-Fi network se-

lection from a smart phone. Since the networks can be owned by different operators,

the network selection problem, which used to be resolved in a centralized manner

by admission control [3, 40], should be investigated in a distributed perspective by

considering users’ own interests. In the wireless access network selection problem,

a myopic strategy can usually be adopted by choosing the one with the strongest

signal. A consequence of this strategy is the congestion of users to communicate

with certain network controllers such as access points (APs), switches, or routers.

The concentration of users creates an unbalanced load in the network, which leads to

an inefficient resource utilization for service providers and a poor quality-of-service

(QoS) for users.

Efficient resource utilization is an important issue in modern wireless access

networks due to limited available resources such as signal power, temporal and spa-
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Figure 4.1: Wi-Fi network selection.

tial bandwidth. On one hand, the service provider attempts to maximize resource

utilization such that the available resources can accommodate as many users as pos-

sible. On the other hand, due to the individual rationality and the selfish nature,

a user aims to optimize his/her own utility. Therefore, a user’s optimal strategy

in such a resource-sharing scenario inevitably has to take into consideration the

negative network externality [35, 83], i.e., the influence of other users’ strategies on

the user’s own utility. Commonly referred in economics and business, the negative

network externality is the effect that occurs when more users make the available

resource less valuable. For example, the traffic congestion overloads the highway.

Overwhelming customers degrade the quality-of-service in a restaurant. The nega-

tive network externality in these examples impairs the utilities of the users making

the same decision.

In this chapter, we firstly focus on how a user should choose one of the available
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wireless access networks considering the negative network externality. Wireless ac-

cess network selection is an essential problem of resource utilization and has received

great attention recently [6, 8, 18, 20, 21, 50, 58, 70, 74, 86, 92, 117]. In [8], centralized

approaches are investigated to provide congestion relief by explicit channel switch-

ing and network-directed roaming. A distributed access point selection algorithm

based on no regret learning is proposed in [21]. The authors show that the algo-

rithm can guarantee convergence to an equilibrium. The arrival and departure of

the users in network selection problems are also considered in [58] and [117]. An-

other class of network selection approaches is based on game theory. Game theory

has been recognized as an ideal tool to study the interactions among users [39,106].

It has been widely used in wireless communications and networking for many differ-

ent problems [22, 46, 66, 104, 106] including power control [46], cooperation stimula-

tion [22], and security enforcement [116]. In [70], Mittal et al. consider users chang-

ing locations as strategies to obtain more resources and analyze the corresponding

Nash equilibria (NE). In [18], the network selection is modelled as a congestion

game, where players make decisions simultaneously to optimize the interference and

throughput. Also, the congestion in the network selection game is similar to that

in the channel selection game, e.g., [97, 119, 120]. In [97], an atomic congestion

game in which resources are allowed to be reused among non-interfering users is

considered. In [119] and [120], the authors investigated game theoretic solutions to

the distributed channel selection problem in opportunistic spectrum access systems.

A comprehensive review and comparison of existing decision-theoretic solutions in-

cluding Markov decision process, game theory and stochastic control can be found
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in [118].

However, most of the existing works study the network selection problem under

the scenario where users make decisions simultaneously. In this chapter, we consider

the problem under a different scenario where users make decisions sequentially and

their optimal decisions involve the prediction of subsequent users’ decisions due

to the negative network externality. Sequential decisions considering the negative

network externality effect are studied in the Chinese restaurant game [54,107,108],

in which the equilibrium of grouping under the scenario of a fixed total number of

players is characterized. In this chapter, we formulate the wireless access network

selection problem as a stochastic game with negative network externality, where

users arrive at and depart from networks in a probabilistic manner. The problem of

finding the optimal decision rule is shown to be a multi-dimensional Markov Decision

Process (MDP). Different from the conventional MDP [79], the multi-dimensional

MDP has multiple potential functions and thus the dynamic programming (DP) [11]

cannot be directly applied. We propose a modified value iteration algorithm to

find the equilibrium for the multi-dimensional MDP. The analysis of the proposed

algorithm shows that the strategy profile generated by the algorithm has a threshold

structure, which enables us to save the storage space of the strategy profile from

O(N2) to O(N logN), where N2 is the number of system states in the two-network

scenario. Simulation results verify the analysis and demonstrate the efficiency and

effectiveness of the proposed algorithm, i.e., while achieving the optimal strategy for

the individual, the proposed algorithm attains similar performance of social welfare

compared to the centralized method that maximizes the social welfare.
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The second focus of this chapter is the truthful mechanism design [38, 62,

72, 73, 102] for the network selection game. Mechanism design is to devise pricing

and allocation rules satisfying the incentive compatibility [62, 73]. In the network

selection game, users makes decisions relying on the system states which consist of

the information provided by the networks, possibly owned by different operators

with different interests. Therefore, the reported state may be untruthful if it is

profitable to make a deceitful claim. In this chapter, we investigate the mechanism

design problem with incentive compatibility constraints, which enforce the networks

to report truthfully, while optimizing the utility of users. The formulated problem

is a mixed integer programming problem which in general lacks an efficient solution.

Exploiting the optimality of substructures, we propose a dynamic programming

algorithm that can efficiently and optimally solve the problem in the two-network

scenario. For the multi-network scenario, the proposed algorithm can outperform

the heuristic greedy approach in a polynomial-time complexity. Finally, simulation

results are shown to validate the analysis and demonstrate the effectiveness of the

proposed algorithms.

The novelty and technical contribution of this chapter are summarized as fol-

lows. We formulate the distributed wireless access network selection problem as a

multi-dimensional MDP, which, to the best of our knowledge, is new and has not

been studied before. We propose a modified value iteration algorithm to search for

an equilibrium. We also analyze the proposed algorithm and show that the resulting

strategy profile has a threshold structure. We further propose an efficient dynamic

programming algorithm to design a truthful mechanism which enforces the networks

82



to truthfully reveal the state information.

The rest of the chapter is organized as follows. The system model and the

formulation of the wireless access network selection game is described in Section

4.1. In Section 4.2, we propose a modified value iteration algorithm for the multi-

dimensional MDP. The threshold structure of the strategy profile generated by the

proposed algorithm is analyzed in Section 4.3. In Section 4.4, we describe the

mechanism design problem for the network selection game and propose the dynamic

programming algorithm. In Section 4.5, the performance of the proposed algorithms

is evaluated using numerical simulation. Finally, Section 4.7 concludes the chapter.

4.1 System Model and Problem Formulation

In this section, we describe in detail the system model and the problem for-

mulation of the wireless access network selection problem. To better illustrate the

idea, we first introduce some necessary notations including the probabilistic model

and then characterize the (approximate) equilibrium. Note that as will be seen,

the model is quite general and hence its application is not restricted to the network

selection problem but can also be deployed in other problems with negative network

externality.

4.1.1 System Model

The system under consideration comprisesK wireless access networks and each

network has a capacity ofN users, i.e., a network can simultaneously serve at mostN
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users. For the sake of notational conciseness, we consider that all the networks have

the same capacity. The analysis can be easily extended to the system with networks

of different capacity. We also assume that the networks have no buffer room for

users, which means when a network is full, users cannot make request of connection

to the network. Each user in network k obtains a utility Rk(sk) per unit time, where

sk is the current number of users in network k. The utility function is defined as the

individual throughput, i.e., Rk(sk) = log(1+ PS/N0

(sk−1)PI/N0+1
), ∀k, which represents the

achievable data rate under inter-user interference, where PS/N0 denotes the signal-

to-noise power ratio, and PI/N0 is the interference-to-noise power ratio. The utility

represents the quality-of-service (QoS) guaranteed by the network but restricted to

the available resource such as the total transmission power and the bandwidth of

radio frequency. The negative network externality is manifested in the decrease of

the data rate as the number of users in the network increases due to a higher inter-

user interference. Note that the utilities of users in the same network are assumed

the same at each time slot since the network can provide the same QoS to each user

by means of resource allocation, even though the instantaneous channel conditions

of different users may be different. For example, centralized downlink power control

algorithms [65, 129] can be applied by the network to attain a common signal to

interference-plus-noise ratio (SINR) or to maximize the minimum SINR among the

users.

The users with Poisson distributed arrival rate λ̄0 (users per second) have

choices of connecting to one of the K networks. After a user makes his decision,

he/she cannot switch to any of other networks and has to stay during a period of
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time with exponential distribution of parameter µ̄, which is assumed the same for

all networks for simplicity. The users with arrival rate λ̄k can only choose network

k, for k = 1, . . . , K. These users can be envisioned as either the users with certain

deterministic behavior, or the users who can only have access to one specific network

due to the geographical distribution. Note that incorporating this type of users only

makes the system model more general since we can simply set these rates as zero if

there are no such users.∗

The system state s = (s1, . . . , sK) takes its value from the state space S =

{(s1, . . . , sK)|sk = 0, 1, ..., N, k = 1, . . . , K}, and represents the state that sk users

are in network k, for k = 1, . . . , K. We consider a discrete time Markov sys-

tem where a time slot has duration T (seconds). Then the arrival and depar-

ture probabilities λk = λ̄kTe
−λ̄kT and µ = µ̄T e−µ̄T can be approximated as λk ≈

λ̄kT, k = 0, . . . , K and µ ≈ µ̄T when T is sufficiently small [67, 77, 109]. Let

F(s) = {k|sk = N, k = 1, . . . , K} be the index set of the full networks which are

serving the maximum number of users and thus cannot accept any more. The com-

plement set of F(s) is denoted by F̄(s) = {k|sk < N, k = 1, . . . , K}, i.e., the index

set of the non-full networks. The strategy space of network selection is restricted

in F̄(s) when s is a boundary state, i.e., when σs ∈ F̄(s). We assume that the

connection request from users arriving at the full networks will be rejected and the

∗More general types of users, such as users who can only connect to one of a subset of K

networks, can be considered. Here for simplicity we only consider two types of users, i.e., users

who have choices of connecting to any one of K networks, and users who can only choose one

specific network.
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traffic then goes to other non-full networks. To model such a traffic transition, we

therefore assume that the traffic immediately flows to the non-full network. For

the two-network case, at most only one non-full network has room for those users,

so the traffic goes to that non-full network. For the multi-network case, multiple

non-full networks can accommodate those users. In order to provide a well-defined

Markov system and to simplify the notation, we assume that the traffic goes to a

specific network, i.e., min F̄(s), the network with the minimum index. Notice that

if F̄(s) = ϕ, i.e., all networks are full, no connection request can be accepted. The

network selection strategy when the user observes state s is denoted as σs, which

takes value in F̄(s). We define σs = j if network j is chosen. The indicator function

Ik(σs) is then defined as: if σs = j, Ij(σs) = 1; otherwise Ij(σs) = 0. We have the

state transition probability of an arrival event as

Psys (s+ ej|s) =


∑

i∈F(s) λi + λj + Ij(σs)λ0, if j = min F̄(s),

λj + Ij(σs)λ0, if j ∈ F̄(s)\
{
min F̄(s)

}
,

(4.1)

where s and s + ej denote the system states at the current time slot and the next

time slot, and ej is a standard basis vector whose j-th coordinate is 1 and other

coordinates are 0. At system state s, since the number of users in network j is sj,

the transition probability of a departure event is given by

Psys (s− ej|s) = sjµ, j = 1, . . . , K. (4.2)
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Furthermore, the probability that the system state remains the same is

Psys (s|s) =


1−

∑K
j=0 λj −

∑K
j=1 sjµ, if F̄(s) ̸= ϕ,

1−
∑K

j=1 sjµ, if F̄(s) = ϕ.

(4.3)

The duration of a time slot T should be chosen such that
∑K

j=0 λj +KNµ ≤ 1, i.e.,

T ≤ 1/(
∑K

j=0 λ̄j +KNµ̄).

For instance, when K = 2, 0 ≤ s1 ≤ N−1, and 0 ≤ s2 ≤ N−1, the transition

probability is given by

Psys {s′|s = (s1, s2)} =



I1(σs)λ0 + λ1, if s′ = (s1 + 1, s2),

I2(σs)λ0 + λ2, if s′ = (s1, s2 + 1),

s1µ, if s′ = (s1 − 1, s2),

s2µ, if s′ = (s1, s2 − 1),

1− λ0 − λ1 − λ2 − s1µ− s2µ, if s′ = (s1, s2),

0, otherwise.

(4.4)

Similarly the corresponding transition probability for s1 = N , 0 ≤ s2 ≤ N − 1 or

0 ≤ s1 ≤ N − 1, s2 = N can also be defined.

Figure 4.2 depicts the state transition diagram when K = 2. The dynamic of

the two-network system can be described by a two-dimensional (2-D) Markov chain

where the probability Psys(s|s) is not shown in Figure 4.2 for conciseness.
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Figure 4.2: State diagram of the 2-D Markov chain.

4.1.2 Expected utility

The strategy profile σ = {σs|∀s ∈ S} is a mapping from the aggregate state

space to the action space, i.e., σ : {0, 1, ..., N}K 7→ {1, 2, . . . , K}. Given a strategy

profile σ, we can obtain the system transition probability in (4.1) - (4.3). When a

rational user arrives and observes system state s0, he/she makes the decision σs0 = k̂

which leads the user into the system state s1 = s0 + ek̂. Then, the expected utility

of the rational user is given by

Vk̂(s1) = E

[
∞∑
t=1

(1− µ)t−1Rk̂(st)

∣∣∣∣∣ s1
]
, (4.5)

where st denotes the system state at time t. Since µ is the probability that the service

is terminated in one time slot, then (1−µ) can be interpreted as the probability that

the user stays in the network in one time slot. The value (1−µ) can also be regarded
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as the discounting factor for the future utility as shown later in (4.6). The strategy

σs0 = k̂ determines which network the user will enter and thus which expected utility

function the user will obtain. Denoted by Vk̂(s1), the expected utility function is the

expected value of the discounted sum of the immediate utilities Rk̂(st) accumulated

from the next time slot. Notice that s1 = s0+ek̂ is uniquely determined by the user’s

strategy σs0 , but the subsequent states st, for t ≥ 2, are stochastic and dependent

on the arrival of other users, including users from user-arrival stream k, 1 ≤ k ≤ K,

and other rational users.

From the Bellman equation [79], the expected utility in (4.5) can be shown to

satisfy the following recursive expression.

Vk(s) = Rk(sk) + (1− µ)
∑
s′

Pk (s
′|s)Vk(s

′), (4.6)

where

Pk (s
′|s) =



∑
i∈F(s) λi + λj + Ij(σs)λ0, if j = min F̄(s),

λj + Ij(σs)λ0, if j ∈ F̄(s)\
{
min F̄(s)

}
,

siµ, if s′ = s− ei,∀i ̸= k,

(sk − 1)µ, if s′ = s− ek,

1−
∑K

j=0 λj −
∑K

j=1 sjµ+ µ, if s′ = s,

0, otherwise.

(4.7)

which is the transition probability given that the user still stays in network k. The

probability of transition from s to s−ek is (sk−1)µ since sk−1 users may leave the

network. The transition probability from s to other states is similar to the definition
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of Psys in (4.4).

4.1.3 Best Response of Rational Users

Due to the selfish nature, when observing the state s, a rational user will

choose the strategy σs to maximize his expected utility. Thus, the rational strategy

σs has to satisfy

σs = argmax
k

Vk(s+ ek). (4.8)

It can be seen that with the strategy profile in which the strategy of every state

satisfies (4.8), no user can obtain a higher expected utility by unilateral deviation

to any other strategy. Therefore, the strategy profile satisfying (4.6)-(4.8) is a Nash

equilibrium of the stochastic game.

4.2 Modified Value Iteration Algorithm

The problem of finding the strategy profile satisfying (4.6)-(4.8) is not a con-

ventional Markov Decision Process problem. In a conventional MDP problem [79], a

single potential function is associated with each system state, and the optimal strat-

egy can be obtained directly by optimizing the potential function. Such a problem

can often be solved via the theory of dynamic programming (DP) [11]. However, in
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our model, multiple potential functions are related in a vector form:

V1(s)

V2(s)

...

VK(s)


=



R1(s1)

R2(s2)

...

RK(sK)


+ (1− µ)



p1 0 · · · 0

0 p2 · · · 0

...
. . .

...

0 0 · · · pK



T 

v1

v2

...

vK


, (4.9)

where 0 denotes an all-zero vector, pk and vk are vectors comprising Pk(s
′|s) and

Vk(s
′) as elements, k = 1, . . . , K. The transpose operator is denoted by (·)T .

The strategy σs is determined by comparing Vk(s + ek) for all k as in (4.8).

Thus, DP cannot be directly applied in such a problem. It is important to point

out that a user makes a decision after he arrives and observes the system state s.

The strategy leads the user into some network k and results in an expected utility

Vk(s + ek). In subsequent time slots, the user cannot change from the network

he/she is staying to any other network. The expected utility is affected by others’

strategies through the transition probabilities as given in (4.6).

We can see that given the expected utilities {Vk}Kk=1, the rational strategy

profile σ should satisfy (4.8). On the other hand, given a strategy profile σ, the

expected utilities {Vk}Kk=1 can be found by (4.6), where the transition probability

Pk(s
′|s) is a function of the strategy σs. To obtain the optimal strategy profile σ∗

satisfying (4.6)-(4.8), we propose a modified value iteration algorithm to iteratively

solve the problem. At the n-th iteration, the rational strategy profile is given by

σ(n+1)
s = argmax

k
V

(n)
k (s+ ek), ∀s ∈ S. (4.10)
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The expected utility functions can be obtained by solving

V
(n+1)
k (s) = Rk(sk) + (1− µ)

∑
s′∈S

P
(n+1)
k (s′|s)V (n+1)

k (s′), ∀s ∈ S,∀k ∈ {1, . . . , K},

(4.11)

where the transition probability P
(n+1)
k (s′|s) is updated using the corresponding

updated strategies, i.e.,

P
(n+1)
k (s′|s) =



∑
i∈F(s) λi + λj + Ij(σ

(n+1)
s )λ0, if s′ = s+ ej, j = min F̄(s)

λj + Ij(σ
(n+1)
s )λ0, if s′ = s+ ej, j ∈ F̄(s)\

{
min F̄(s)

}
sjµ, if s′ = s− ej, j ̸= k

(sk − 1)µ, if s′ = s− ek

1−
∑

j∈F̄s
Pk (s+ ej|s)

−
∑K

j=1 Pk (s− ej|s) ,
if s′ = s,

0, otherwise,

(4.12)

The solution to (4.11) can be obtained through several approaches, one of which

is the value iteration algorithm [79]. The algorithm first initializes V
(n+1)
k (s) as an

arbitrary value such as zero and iteratively updates it using (4.11). The iteration

function is a contraction mapping so the convergence to a unique fixed point is

guaranteed. Another approach is to consider (4.11) as K sets of linear systems,

where each set has N2 unknown variables corresponding to {V (n+1)
k (s), ∀s} and N2

equations. Such linear systems can be solved by linear programming or matrix

inversion.

In the next section, we will theoretically show that for K = 2, the proposed
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algorithm results in a threshold structure of the strategy profile at each iteration,

and such a threshold structure is also observed for general K > 2. However, the

strategy profile may not converge but oscillates near the threshold due to the hard

decision rule in (4.8). The non-convergence occurs when the rational strategy of

the state near the threshold oscillates between different choices each time when the

expected utility is updated. When such a situation happens, the expected utilities

corresponding to different strategies are very close to each other. Hence, to solve this

problem, we relax the hard decision rule by allowing a small region of tolerance for

switching among the strategies [82], which leads to the soft decision rule as follows.

σ(n+1)
s =


σ
(n)
s , if V

(n)

σ
(n)
s

(s+ e
σ
(n)
s
) ≥ maxk V

(n)
k (s+ ek)− ϵ,

argmaxk V
(n)
k (s+ ek), if V

(n)

σ
(n)
s

(s+ e
σ
(n)
s
) < maxk V

(n)
k (s+ ek)− ϵ,

(4.13)

where ϵ > 0 is a small constant. Table 4.1 summarizes the proposed modified

value iteration algorithm for the multi-dimensional MDP. Notice that the algorithm

stops when an equilibrium is found or all the strategy profiles are searched. By

definition, when the algorithm obtains a solution, the resulting strategy profile is

an ϵ-approximate NE [39], in which the strategy at each state has an expected

utility that is at most ϵ less than that of any other strategy. Note that there may be

multiple ϵ-approximate NEs especially for a larger ϵ when a larger region of tolerance

is allowed for switching among the strategies.
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Table 4.1: Modified Value Iteration Algorithm

(i) Initialize: V
(0)
k (s) = 0, ∀k ∈ {1, . . . ,K}, ∀s ∈ S. T = ϕ.

(ii) Loop :

1. Update {σ(n+1)
s } by (4.13).

If {σ(n+1)
s } = {σ(n)

s }, then stop loop.

else

if {σ(n+1)
s } ∈ T , then choose a {σs} ∈ T̄ , and let {σ(n+1)

s } = {σs}.

end if

end if

T = T ∪ {σ(n+1)
s }.

2. Update {P (n+1)
k (s′|s)} by (4.12).

3. Solve {V (n+1)
k (s)} in (4.11) by value iteration or linear programming.

Until T̄ = ϕ or {σ(n+1)
s } = {σ(n)

s }.

4.3 Threshold Structure of Strategy Profile

In this section, we show that the strategy profile produced by the proposed

modified value iteration algorithm in each iteration exhibits a threshold structure

for two-network systems. With the assumption that Rk(sk), k = 1, 2, are non-

increasing, the following lemma shows that V1(s) is non-decreasing and V2(s) is

non-increasing along the line of s1 + s2 = m, ∀m ∈ {1, 2, ..., 2N}.

Lemma 2 For n ≥ 0,

V
(n)
1 (s) ≥ V

(n)
1 (s+ e1 − e2), (4.14)

V
(n)
2 (s) ≤ V

(n)
2 (s+ e1 − e2). (4.15)

Proof: We use induction to show that (4.14) and (4.15) hold for all n ≥ 0.

i) Since V
(0)
1 (s) and V

(0)
2 (s) are initialized as zeros, (4.14) and (4.15) hold for

n = 0.
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ii) We assume the induction hypothesis holds for some n ≥ 0. Then it can

be shown that (4.14) and (4.15) also hold for (n + 1) by analyzing the following

difference. Let s′ = s+ e1 − e2. For 0 ≤ s1 ≤ N − 2 and 1 ≤ s2 ≤ N − 1,

V
(n+1)
1 (s)− V

(n+1)
1 (s′) = R1(s1)−R1(s1 + 1) + (1− µ)

[
λ1

(
V

(n)
1 (s+ e1)− V

(n)
1 (s′ + e1)

)
+ λ0

(
I1(σs)V

(n)
1 (s+ e1)− I1(σs′)V

(n)
1 (s′ + e1)

)
+ λ2

(
V

(n)
1 (s+ e2)− V

(n)
1 (s′ + e2)

)
+ λ0

(
I2(σs)V

(n)
1 (s+ e2)− I2(σs′)V

(n)
1 (s′ + e2)

)
+ (s1 − 1)µV

(n)
1 (s− e1)− s1µV

(n)
1 (s′ − e1)

+ s2µV
(n)
1 (s− e2)− (s2 − 1)µV

(n)
1 (s′ − e2)

+ (1− λ0 − λ1 − λ2 − s1µ− s2µ)
(
V

(n)
1 (s)− V

(n)
1 (s′)

)]
.

(4.16)

Due to the fact that the utility function R1(s1) is non-increasing in s1 and the

induction hypothesis which guarantees the non-negativeness of many differences of

terms in (4.16), by rearranging a few terms, it suffices to discuss the following cases.

Case 1: σ
(n)
s = σ

(n)
s′ = 1. Then, V

(n)
1 (s+e1)−V

(n)
1 (s′+e1) ≥ 0 by the induction

hypothesis.

Case 2: σ
(n)
s = σ

(n)
s′ = 2. Then, V

(n)
1 (s+e2)−V

(n)
1 (s′+e2) ≥ 0 by the induction

hypothesis.

Case 3: σ
(n)
s = 1 and σ

(n)
s′ = 2. Then, V

(n)
1 (s+ e1)− V

(n)
1 (s′ + e2) = 0.

Case 4: σ
(n)
s = 2 and σ

(n)
s′ = 1. Then, V

(n)
1 (s + e2)− V

(n)
1 (s′ + e1) ≥ 0 by the

induction hypothesis.
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Therefore, we have V
(n+1)
1 (s) − V

(n+1)
1 (s′) ≥ 0, for 0 ≤ s1 ≤ N − 2 and

1 ≤ s2 ≤ N − 1. Next, it can be easily checked that the inequality still holds for the

case of s1 = N − 1, 1 ≤ s2 ≤ N − 1 as well as the case of 0 ≤ s1 ≤ N − 1, s2 = N .

Similarly, V
(n)
2 (s) ≤ V

(n)
2 (s′) can also be established.

The following lemma shows the difference of V1(s+ e1) and V2(s+ e2) is non-

increasing along the line of s1 + s2 = m, ∀m ∈ {1, 2, ..., 2N}.

Lemma 3 V
(n)
1 (s + e1) − V

(n)
2 (s + e2) ≥ V

(n)
1 (s′ + e1) − V

(n)
2 (s′ + e2), where s′ =

s+ e1 − e2.

Proof: It can be easily shown using Lemma 2.

Theorem 1 The strategy profile generated by the modified value iteration algorithm

has a threshold structure for K = 2.

Proof: The soft decision rule in (4.13) for K = 2 can be rewritten as

σ(n+1)
s =


σ
(n)
s , if |V (n)

1 (s+ e1)− V
(n)
2 (s+ e2)| ≤ ϵ,

1, if V
(n)
1 (s+ e1) > V

(n)
2 (s+ e2) + ϵ,

2, if V
(n)
2 (s+ e2) > V

(n)
1 (s+ e1) + ϵ.

(4.17)

If σ
(n)
s = 2 and σ

(n+1)
s = 1, i.e., the strategy of the current iteration is updated to be

different from the one of the previous iteration, then we must have V
(n)
1 (s + e1) >

V
(n)
2 (s + e2) + ϵ. Lemma 3 implies that V1(s

′ + e1) − V2(s
′ + e2) is non-increasing

along the line of s′1 + s′2 = s1 + s2. Thus, we have

V1(s
′ + e1)− V2(s

′ + e2) ≥ V1(s+ e1)− V2(s+ e2) > ϵ > 0,

for s′ = s− ke1 + ke2, k = 1, 2, . . . ,min{s1, N − s2}. (4.18)
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Therefore, σ
(n+1)
s′ = 1 for s′ = s−ke1+ke2, k = 1, 2, ...,min{s1, N−s2}. Similarly, if

σ
(n)
s = 1 and σ

(n+1)
s = 2, then σ

(n+1)
s′′ = 2, for s′′ = s+ke1−ke2, k = 1, 2, ...,min{N−

s1, s2}. With the above discussion, the strategies along the line of s1+s2 = m, ∀m ∈

{1, 2, ..., 2N} retain a threshold structure in each iteration. Since the initialization

of the strategy profile exhibits a threshold structure trivially, the strategy profile

obtained in each iteration of the algorithm has a threshold structure.

In a two-network system, the number of system states is N2 and thus N2

strategies are needed to be stored without the threshold structure. The storage

space of each strategy is 1 bits. Now with such threshold structure on each line

s1 + s2 = m, m = 1, 2, ..., 2N , we can simply store the threshold point on each

line. Each threshold point requires the storage space of logN bits. Therefore, The

storage of the strategy profile can be reduced from O(N2) to O(N logN).

In this chapter, we only provide the analysis for the two-network systems.

The analysis for systems with more than two networks is difficult due to the lack

of the optimality in a single potential function as in the admission control problem

[26, 59]. However, it is observed from the simulation results in Section 4.5 that the

multi-network systems also possess the strategy profiles with threshold structures.

The theoretic analysis of the threshold structure for the multi-network systems is

important but out of the scope of this chapter, and will serve as one of our future

work.
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4.4 Truthful Mechanism Design

In the above discussion, we have implicitly assumed the networks truthfully

report their states sk, and therefore the user can observe the true system state s,

by which he/she can make a decision to maximize his/her utility. However, without

appropriate incentives, the networks may not truthfully report their states. Instead,

a network may untruthfully report some state s′k different from the true state sk

if profitable. In this section, we consider to enforce truth-telling as a dominant

strategy for the networks by incorporating pricing rules into the wireless access

network selection game.

A mechanism consists of pricing rules {Pk(s)} and allocation rules {ak(s)},

where Pk(s) is denoted as the unit price of the expected rate Vk(s) provided by

network k at state s, and ak(s) is denoted as the allocation probability, which is

either 1 or 0, i.e., whether or not the user enters network k. The utility of network

k is given by

Uk(s) = Vk(s+ ek)Pk(s)− ck(s+ ek)ak(s), (4.19)

where ck(s + ek) is the cost per user. With the states reported from the networks,

these rules determine the user allocation and the price the user has to pay, both as

functions of the reports from networks. For example, if network k reports his state as

s′k and others report s−k = {sj : j ̸= k}, his utility becomes Vk(s+ ek)Pk(s
′
k, s−k)−

ck(s + ek)ak(s
′
k, s−k). Notice that Vk(s + ek) and ck(s + ek) are functions of true

states that do not depend on the reports. Thus, the truth-telling or the incentive
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compatibility (IC) constraints are

Vk(sk + 1, s−k)Pk(sk, s−k)− ck(sk + 1, s−k)ak(sk, s−k)

≥ Vk(sk + 1, s−k)Pk(s
′
k, s−k)− ck(sk + 1, s−k)ak(s

′
k, s−k), ∀sk, s′k, s−k, (4.20)

which means truth-telling is a dominant strategy for each network at each state.

The mechanism also has to satisfy the individual rationality (IR) constraints, i.e.,

Vk(sk + 1, s−k)Pk(sk, s−k)− ck(sk + 1, s−k)ak(sk, s−k) ≥ 0,∀sk, s−k, (4.21)

which guarantees all networks would attend the mechanism.

In the previous sections, we study the network selection game with the focus

of the interdependence between the users. In this section, we study the interplay

among the networks. To this end, we assume that users’ strategies are chosen based

on the ex ante optimality [39,62], i.e., the allocation rule is based on optimizing the

expected objective over the state probability. The truthful mechanism design is to

construct a set of pricing and allocation rules which optimize a specific objective

while satisfying IC and IR constraints. For example, the mechanism design problem

Pp for minimizing the expected payment can be formulated as follows.

Pp : min
{Pk},{ak}

∑
s∈S

π(s)
K∑
k=1

Pk(s)Vk(s+ ek) (4.22)

s.t. (IC), (IR), (4.23)

K∑
k=1

ak(s) = 1,∀s ∈ S, (4.24)

ak(s) ∈ {0, 1},∀s,∀k. (4.25)
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Other mechanism design objectives such as the utility maximization Pu can be

formulated by substituting (4.22) with users’ expected utility function as follows.

Pu : max
{Pk},{ak}

∑
s∈S

π(s)
K∑
k=1

[λak(s)Vk(s+ ek)− Pk(s)Vk(s+ ek)] (4.26)

s.t. (4.23), (4.24), (4.25).

The unit cost ck(s+ ek)/Vk(s+ ek) is denoted as wk(s). The (IC) constraints

become

Pk(sk, s−k)− wk(sk, s−k)ak(sk, s−k) ≥ Pk(s
′
k, s−k)− wk(sk, s−k)ak(s

′
k, s−k),∀sk, s′k, s−k.

(4.27)

In the following, we need a monotonicity assumption for the unit cost, i.e., wk(sk, s−k)

is non-decreasing in sk, i.e., wk(sk, s−k) ≥ wk(s
′
k, s−k), if sk ≥ s′k. Since Vk(sk, s−k) is

non-increasing in sk, the assumption holds when ck(sk, s−k) is non-decreasing in sk.

For example, if the per-user cost is a constant in each network, i.e., ck(sk, s−k) = Ck,

then the assumption holds. The monotonicity of wk(sk, s−k) leads to the threshold

structure of ak(sk, s−k) as in the following lemma.

Lemma 4 Under IC constraints, there exists a threshold value of sk on the alloca-

tion rule ak(sk, s−k), i.e., given s−k, there exists s∗k(s−k) ∈ {−1, 0, 1, . . . , N}, such

that

ak(sk, s−k) =


1, sk ≤ s∗k(s−k)

0, sk > s∗k(s−k).

(4.28)

Proof: From (4.27), we have

Pk(sk, s−k)− Pk(s
′
k, s−k) ≥ wk(sk, s−k) [ak(sk, s−k)− ak(s

′
k, s−k)] . (4.29)
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Interchanging sk and s′k, we also have

Pk(s
′
k, s−k)− Pk(sk, s−k) ≥ wk(s

′
k, s−k) [ak(s

′
k, s−k)− ak(sk, s−k)] . (4.30)

Combining the above two inequality leads to

[wk(sk, s−k)− wk(s
′
k, s−k)] [ak(sk, s−k)− ak(s

′
k, s−k)] ≤ 0. (4.31)

Thus, since wk(sk, s−k) is non-decreasing in sk, the allocation rule ak(sk, s−k)

has to be non-increasing in sk. With this monotonicity and the fact that ak(sk, s−k)

can only have value of 0 or 1 as in (4.25), we can conclude that there exists a

threshold of ak(sk, s−k) in sk as described in (4.28).

Corollary 1 If K = 2, then s∗1(s2) is non-decreasing in s2, and s∗2(s1) is non-

decreasing in s1.

Proof: Suppose ∃s2 such that s∗1(s2 + 1) < s∗1(s2). By Lemma 4, we have

a1(s1, s2+1) = 0, for s1 > s∗1(s2+1), which implies a2(s1, s2+1) = 1, for s1 > s∗1(s2+

1), due to the constraint that a1(s)+a2(s) = 1, ∀s. Therefore, a2(s∗1(s2), s2+1) = 1,

which implies a2(s
∗
1(s2), s2) = 1 by Lemma 4, but we also have a1(s

∗
1(s2), s1) = 1,

which leads to a contradiction.

The following lemma shows that only adjacent IC constraints are necessary.

Lemma 5 Non-adjacent IC constraints are redundant.
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Proof: Let us consider the two adjacent IC constraints as follows.

Pk(sk, s−k)− wk(sk, s−k)ak(sk, s−k) ≥ Pk(sk − 1, s−k)− wk(sk, s−k)ak(sk − 1, s−k),

(4.32)

Pk(sk − 1, s−k)− wk(sk − 1, s−k)ak(sk − 1, s−k) ≥ Pk(sk − 2, s−k)

− wk(sk − 1, s−k)ak(sk − 2, s−k).

(4.33)

Adding (4.32) and (4.33), we have

Pk(sk, s−k)− wk(sk, s−k)ak(sk, s−k)

≥ Pk(sk − 2, s−k)− wk(sk, s−k)ak(sk − 2, s−k)

− wk(sk, s−k) [ak(sk − 1, s−k)− ak(sk − 2, s−k)]

+ wk(sk − 1, s−k) [ak(sk − 1, s−k)− ak(sk − 2, s−k)]

≥ Pk(sk − 2, s−k)− wk(sk, s−k)ak(sk − 2, s−k). (4.34)

The last inequality is due to that wk(sk, s−k) is increasing in sk and ak(sk, s−k) is

decreasing in sk. It shows that the non-adjacent IC constraints can be inferred from

the adjacent ones.

Using the adjacent IC constraints, we can obtain the bounds for the payments,

i.e., given an allocation rule {ak(s)}, the incentive compatible payment rule {Pk(s)}

satisfies

Pk(sk, s−k) + wk(sk, s−k) [ak(sk − 1, s−k)− ak(sk, s−k)] ≥ Pk(sk − 1, s−k)

≥ Pk(sk, s−k) + wk(sk − 1, s−k) [ak(sk − 1, s−k)− ak(sk, s−k)] (4.35)
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In the optimization problems Pp, we aim to minimize a linear combination of

Pk(sk, s−k) with nonnegative coefficients. Clearly, the lower bound in (4.35) should

be binding; otherwise, the objective function can always be better optimized by

decreasing the non-binding Pk(sk, s−k). Hence, the payment rule can be expressed

as

Pk(sk, s−k) = Pk(N, s−k) +
N∑

r=sk+1

wk(r − 1, s−k) [ak(r − 1, s−k)− ak(r, s−k)] .

(4.36)

To minimize Pk(sk, s−k) while satisfying the IR constraint in (4.21), Pk(N, s−k)

should be set as 0. Substituting Lemma 4 into (4.36), we can conclude

Pk(sk, s−k) =


wk(s

∗
k, s−k), sk ≤ s∗k,

0, sk > s∗k,

(4.37)

where s∗k denotes s∗k(s−k) for notational simplicity.

From the IC and IR constraints, the pricing rule {Pk} can be determined

given the allocation rule {ak}, which is specified by the thresholds {s∗k}. Thus

(4.37) simply means the pricing rule {Pk} is also specified by the thresholds {s∗k}.

Using {s∗k} as optimization variables, the problem Pp can be simplified as

min
{s∗k}

∑
s∈S

π(s)
K∑
k=1

Pk(s)Vk(s)

s.t. (4.24), (4.28), (4.37).

(4.38)

With the simplification, however, the optimization problem is still difficult to be

solved optimally since the optimization variables {s∗k} is discrete and the exhaus-

tive search requires exponential-time complexity in N . Motivated by the optimal
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substructures in the two-network case, a dynamic programming algorithm is pro-

posed for the above problem. The optimal solution to the primary problem can be

broken down into solving the optimal solutions to its subproblems. The dynamic

programming technique essentially performs recursive divide-and-conquer to tackle

each of these sub-problems. However, for the multi-network case, the proposed

dynamic programming approach is suboptimal but the performance is satisfactory

compared to the greedy method. Other traditional optimization algorithms such as

branch-and-bound can be applied to optimally solve the mixed integer programming

problem, but the computational complexity is prohibitively high (exponential in the

number of states) since such an algorithm basically performs exhaustive tree search

with certain pruning strategies. In general a mixed integer program does not have

an efficient solution. In this chapter, we aim to propose an algorithm that is able

to achieve satisfactory performance with reasonable complexity (polynomial in the

number of states).

4.4.1 Proposed Algorithm

Since the number of states is NK , the exhaustive search over all possible

allocation rules requires complexity of O(KNK
). Such an exponential complexity is

formidably high even for a moderate N . In this subsection, we propose a polynomial

time algorithm based on dynamic programming to search for the thresholds {s∗k}.

Let fDP
k ({si : i ∈ I}|{sj : j ∈ J }) denote the optimal value of a set of system states

specified by ({si : i ∈ I}|{sj : j ∈ J }), where the set J consists of coordinates
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with coordinate j being fixed as sj. The set I consists of the coordinates with

ranges, where coordinate i ranges from 1 to si. The set I has k coordinates, i.e., the

considered set of system states is k-dimensional. The optimal value function fDP
k

can be computed using lower-dimensional optimal value functions. The recursive

calculation is described by the following equations. For k = 2, . . . , K,

fDP
k ({si : i ∈ I}|{sj : j ∈ J })

= min
i∈I

{
fDP
k (si − 1, s−i|{sj : j ∈ J }) + fDP

k−1 (s−i| {sj : j ∈ J ∪ {i}})
}
, (4.39)

where s−i = {sl : l ̸= i, l ∈ I}.

ai∗(si∗ , s
′
−i∗ , sj, s−j) = 0, ∀s′−i∗ ≼ s−i∗ , (4.40)

i∗ = argmin
i∈I

{
fDP
k (si − 1, s−i|{sj : j ∈ J }) + fDP

k−1(s−i|{sj : j ∈ J ∪ {i}})
}
,

(4.41)

where s′−i∗ ≼ s−i∗ denotes s′−i∗ ∈ {s′l : s′l ≤ sl, l ̸= i∗, l ∈ I}. The boundary

condition is

fDP
1 (si|s−i) = fDP

1 (si − 1|s−i)
wi(si, s−i)

wi(si − 1, s−i)
+ π(si, s−i)Vi(si + 1, s−i)wi(si, s−i),

(4.42)

a−i∗(si∗ , s
′
−i∗ , sj, s−j) = 1,∀s′−i∗ ≤ s−i∗ , (4.43)

where i∗ is the minimizer in (4.41) when k = 2. Notice that (4.42) is equivalent to

fDP
1 (si|s−i) =

∑si
r=0 π(r, s−i)Vi(r+1, s−i)wi(si, s−i), but the recursive form in (4.42)

is more efficient in computation with the price of using more storage space. The

proposed algorithm is to evaluate fDP
K (N, . . . , N) with I = {1, . . . , K} and J = ϕ by
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using (4.39)-(4.43). The following proposition shows the optimality of the solution

obtained by the proposed algorithm when K = 2.

Proposition 2 For K = 2, the proposed algorithm optimally solves Pp in O(N2).

Proof: For K = 2, (4.39)-(4.43) become

fDP
2 (s1, s2) = min

{
fDP
2 (s1 − 1, s2) + fDP

1 (s2|s1), fDP
2 (s1, s2 − 1) + fDP

1 (s1|s2)
}
,

(4.44)

(a1(s1, s
′
2), a2(s1, s

′
2)) = (0, 1),∀s′2 ≤ s2,

if fDP
2 (s1 − 1, s2) + fDP

1 (s2|s1) > fDP
2 (s2 − 1, s1) + fDP

1 (s1|s2),

(4.45)

(a1(s
′
1, s2), a2(s

′
1, s2)) = (1, 0),∀s′1 ≤ s1,

if fDP
2 (s1 − 1, s2) + fDP

1 (s2|s1) ≤ fDP
2 (s2 − 1, s1) + fDP

1 (s1|s2).

(4.46)

The (4.45) means that when fDP
2 (s1 − 1, s2) + fDP

1 (s2|s1) is larger than fDP
2 (s2 −

1, s1)+ fDP
1 (s1|s2), state (s1, s2) is allocated to network 1, and due to Lemma 4, the

states {(s′1, s2),∀s′1 ≤ s1} are also allocated to network 1. Similarly (4.46) is the

case that state (s1, s2) is allocated to network 2.

To show the dynamic programming algorithm optimally solves the problem,

we need to show the optimal substructures, i.e., the optimal solution to the problem

contains the optimal solutions to the subproblems [27]. In evaluating fDP
2 (N,N),

we consider the allocation of state (N,N), i.e., either a1(N,N) = 1 or a2(N,N) = 1.
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Table 4.2: Dynamic Programming Algorithm for Mechanism Design

(i) Initialization: obtain {V (0)
k (s)} and {π(0)(s)} using Table 4.1.

(ii) Loop:

1. With initial I = {1, . . . ,K}, J = ϕ, evaluate f
(n)
K (N, . . . , N) using (4.39)-(4.43)

to obtain {a(n+1)
k (s)} and {P (n+1)

k (s)}.

2. Calculate {V (n+1)
k (s)} and {π(n+1)(s)}.

Until {a(n+1)
k (s)} and {P (n+1)

k (s)} converge.

If a1(N,N) = 1, then from Lemma 4, we have s∗1(N) = N and thus a1(s1, N) = 1,

0 ≤ s1 ≤ N . Also in this case, a2(N,N) = 0, and s∗2(N) ≤ N − 1. Moreover, from

Corollary 1, we know s∗1(s2) ≤ N , for s2 ≤ N − 1, and s∗2(s1) ≤ N − 1, for s1 ≤ N .

Hence, the allocation of the states {(s1, s2) : 0 ≤ s1 ≤ N, 0 ≤ s2 ≤ N − 1} is

independent of the allocation of the states {(s1, N) : 0 ≤ s1 ≤ N}, which means the

evaluation of fDP
2 (N,N − 1) is independent of fDP

1 (s1 = N |s2 = N). Therefore, if

a1(N,N) = 1, then fDP
2 (N,N) = fDP

2 (N,N − 1) + fDP
1 (s1 = N |s2 = N). Similarly,

if a2(N,N) = 1, then fDP
2 (N,N) = fDP

2 (N − 1, N) + fDP
1 (s2 = N |s1 = N). For

each state (s1, s2), recursively applying the same argument, we have fDP
2 (s1, s2) is

optimal. Hence, fDP
2 (N,N) is optimal. For the computational complexity, since the

number of states is N2, there are N2 different fDP
2 (s1, s2), f

DP
1 (s1|s2) and fDP

1 (s2|s1)

to calculate, and each calculation takes O(1) using (4.44)-(4.46). Therefore, the

complexity of evaluating fDP
2 (N,N) is O(N2).

For K ≥ 3, the solution obtained by the proposed algorithm may be sub-

optimal since monotonicity of allocation thresholds in Corollary 1 only holds when
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K = 2. However, it will be shown in Section 4.5 that the proposed algorithm still

outperforms the heuristic greedy method. For a general K, the computational com-

plexity of the proposed algorithm can be shown to be O(NK), which is polynomial

in N .

Given the expected rate {Vk(s)} and the stationary probability {π(s)}, the

proposed dynamic programming can efficiently find solutions of the allocation rule

{ak(s)} and the pricing rule {Pk(s)} to the problem Pp. However, {Vk(s)} and

{π(s)} depend on {ak(s)} since the state transition probability depends on {ak(s)}.

Therefore, we propose to iteratively update {Vk(s)}, {π(s)}, and {ak(s)}. The

proposed mechanism design algorithm for the network selection game is summarized

in Table 4.2. In the numerical simulation, we observed that the iterative algorithm

exhibits very fast convergence. The typical number of iterations to converge is

between 5 to 8.

The proposed algorithm can be easily modified to solve Pu by replacing the

min in (4.39) and (4.41) with the max, and changing the boundary condition in

(4.42) to be f1(si|s−i) =
∑si

r=0 π(r, s−i)Vk(r, s−i)(λ− w(si, s−i)).

4.5 Numerical Simulation

In this section, we use numerical simulation to verify the analysis and evaluate

the performance of the proposed modified value iteration algorithm as the rational

strategy. The proposed method is compared with the following schemes. We first de-

fine the social welfare given a strategy profile σ as SWσ =
∑

s∈S π
σ(s)

∑K
k=1 skRk(sk),
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where πσ(s) is the stationary probability at system state s. The centralized method

is to exhaustively search through all the possible strategy profiles and choose the

one that achieves the largest social welfare, i.e., σcent = argmaxσ SWσ. Thus, the

centralized method requires a computational complexity of O(K |S|), which is expo-

nentially increasing in the number of system states and is impossible to be used in

practice. The myopic strategy is obtained by choosing the largest immediate utility

after making the decision, i.e., σmyop
s = argmaxk∈{1,...,K}Rk(sk+1). In current cellu-

lar systems, the cell selection is done by choosing the base-station with the highest

detected SNR. Such an approach is similar to the myopic strategy since it only con-

cerns about the immediate utility. Finally, the random strategy is to randomly make

the decision with equal probability, i.e., Pr
{
σrand
s = k

}
= 1

|F̄(s)| ,∀k ∈ F̄(s), where

| · | denotes the cardinality of a set. In the following simulation, the performance of

the random strategy is obtained by averaging the performance of 1000 instances for

each set of parameters.

The algorithm analysis in Section 4.3 shows that there exists a threshold struc-

ture of the strategies along each line of s1 + s2 = m, ∀m ∈ {1, 2, ..., 2N}. We verify

the analysis by numerical simulation in Figure 4.3, which illustrates the strategy pro-

file computed by the proposed algorithm in a two-network system where Ps/N0 = 50,

PI/N0 = 10, T = 0.08 (sec), λ̄0 = 0.5 (users/sec), λ̄1 = 0.125 (users/sec), λ̄2 = 2.5

(users/sec), µ̄ = 1.25 (users/sec), ϵ = 0.05 and N = 8. The x-axis (y-axis) denotes

s1 (s2), i.e., the number of users in network 1 (network 2). The number marked at

the coordinate s = (s1, s2) denotes the computed strategy σs, which is either 1 or

2 in this scenario. This figure shows the strategy profile converges in 30 iterations.
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Figure 4.3: The threshold structure of the strategy profile during iterations of the

proposed algorithm.

The green (dot-dash) line is drawn in between different strategies to emphasize the

threshold. The threshold lines of certain iterations (1, 2, and 10) are also shown in

the figure to illustrate the evolution of the strategy profile during the iterations of

the proposed algorithm. It is observed that at each iteration, the threshold structure

of the strategies always exists along the diagonal lines as the analysis in Section 4.3.

In the rest of simulations, instead of specifying the arrival rates and the time slot

duration, we consider the parameters as transition probabilities since the relative

values of these probabilities directly influence the resulting performance. Figure 4.4

shows the converged strategy profile of a three-network system, where Ps/N0 = 50,

PI/N0 = 10, λ0 = 0.1, λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, µ = 0.1, ϵ = 0.05 and N = 5. It

is observed that the strategy profile also has a threshold structure.
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Figure 4.4: The threshold structure of the strategy profile for a three-network sys-

tem.
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Figure 4.5: Comparison of the proposed method and the centralized method for the

decision maker’s expected utility versus probability of deviation.

Figure 4.5 validates the individual rationality of the proposed method in a

two-network system, where the parameters are set to be Ps/N0 = 50, PI/N0 = 10,

λ0 = 0.2, λ1 = 0.01, λ2 = 0.3, µ = 0.25, ϵ = 0.05, and N = 4. The decision maker’s

expected utility, defined as E[Vσs(s + eσs)], is evaluated versus the probability of

deviation pd. For computational tractability of the centralized method, the number

of users N is set to be 4. Note that the time slot duration is chosen to ensure

that λ0 + λ1 + λ2 + 2Nµ ≤ 1 but the relative values of these probabilities are

retained. The user at state s deviates from the given strategy σs with probability

pd. The decision maker’s expected utility can only be impaired if he deviates from

the strategy profile generated by the proposed method. However, by deviating from

the centralized strategy that maximizes the social welfare, the user can possibly

obtain higher expected utility (about 70% performance improvement in Figure 4.5).
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Clearly, the individual rationality is not satisfied for the centralized strategy.

Figure 4.6(a) and 4.6(b) show the comparison of the decision maker’s expected

utility with different strategy profiles in a two-network system where Ps/N0 = 50,

PI/N0 = 10, λ1 = 0.01, µ = 0.15, ϵ = 0.5, and N = 4. We use the myopic strategy

as the baseline by normalizing the performance of other methods with that of the

myopic strategy. In Figure 4.6(a), λ0 = 0.2 and λ2 is varied from 0.05 to 0.75. In

Figure 4.7(b), λ2 = 0.3 and λ0 is varied from 0.05 to 0.75. It can be seen that

the proposed method performs the best among all the schemes since the decision

maker optimizes his expected utility by choosing network to his best advantage. The

myopic strategy always has performance 1 due to the normalization. The random

strategy is worse than the myopic method which exploits the information of the

immediate utility. The centralized method performs the worst because it maximizes

the social welfare and results in sacrificing the decision maker’s expected utility.

In Figure 4.7(a) and 4.7(b), we compare the social welfare performance of the

strategy profiles generated by different approaches in a two-network system where

the parameters are Ps/N0 = 50, PI/N0 = 10, λ0 = 0.2, µ = 0.25, ϵ = 0.05 and

N = 4. In Figure 4.7(a), λ1 = 0.01 and λ2 is varied from 0.05 to 0.75. In Figure

4.7(b), λ2 = 0.3 and λ0 is varied from 0.05 to 0.75. The performance of each method

is normalized by the myopic one. It can be seen that the proposed method performs

similar to that of the centralized method which maximizes the social welfare. Figure

4.8 shows the impact of ϵ on the number of iterations for the strategy profile to

converge using the proposed modified value iteration algorithm. It can be seen that

when ϵ increases, it requires smaller number of iterations to converge since the region
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(a) The decision maker’s expected utility versus λ2.
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(b) The decision maker’s expected utility versus λ0.

Figure 4.6: Comparison of different strategies for the decision maker’s expected

utility.
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(a) The social welfare versus λ2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

λ
0

S
oc

ia
l W

el
fa

re
 (

no
rm

al
iz

ed
 w

.r
.t.

 M
yo

pi
c)

4 users, λ
1
 = 0.01, λ

2
 = 0.3, µ = 0.25, R

k
(s

k
) = log(1+P

S
/((s

k
−1)P

I
 + N

0
))

 

 

Myopic
Centralized
Proposed
Random

(b) The social welfare versus λ0.

Figure 4.7: Comparison of different strategies for the social welfare.
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Figure 4.8: The impact of ϵ on the number of iterations for the strategy profile to

converge.

of tolerance for switching among the strategy profile is larger, and possibly more

ϵ-approximate NEs are available.

Figure 4.9 and 4.10 show the performance comparison for different mechanism

designs when K = 2 and K = 3, respectively. The exhaustive search is to search

over all possible allocation rules and find out the one with the optimal objective

value. The greedy algorithm is characterized by the following recursive formula.

fG
k ({si, i ∈ I}|{sj, j ∈ J }) = min

i∈I

{
fG
k−1(s−i|{sj, j ∈ J ∪ {i}})

}
, (4.47)

ai∗(si∗ , s
′
−i∗ , sj, s−j) = 0,∀s′−i∗ ≼ s−i∗ , (4.48)
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Figure 4.9: Comparison of different mechanism designs for the expected payment

versus λ2 when K = 2.
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Figure 4.10: Comparison of different mechanism designs for the expected payment

versus λ3 when K = 3.
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where i∗ = argmini∈I
{
fG
k−1(s−i|sj, j ∈ J ∪ {i})

}
. The boundary condition is

fG
1 (si|s−i) = fG

1 (si − 1|s−i)
wi(si, s−i)

wi(si − 1, s−i)
+ π(si, s−i)Vi(si + 1, s−i)wi(si, s−i),

(4.49)

a−i∗(si∗ , s
′
−i∗ , sj, s−j) = 1, ∀s′−i∗ ≤ s−i∗ , (4.50)

where i∗ is the minimizor in (4.48) when K = 2. The greedy algorithm is to

evaluate fG
K(N, . . . , N) with I = {1, . . . , K} and J = ϕ by using (4.47)-(4.50).

With a similar analysis, the computational complexity of the greedy algorithm can

be shown to be O(NK). Compared with the proposed DP algorithm, the greedy

method is a heuristic approach which makes a local optimal decision according to

lower dimensional results. We can see more clearly by considering the case K = 2,

i.e.,

fG
2 (s1, s2) = min

{
fG
1 (s2|s1), fG

1 (s1|s2)
}
, (4.51)

(a1(s1, s
′
2), a2(s1, s

′
2)) = (0, 1), ∀s′2 ≤ s2, if fG

1 (s2|s1) > fG
1 (s1|s2), (4.52)

(a1(s
′
1, s2), a2(s

′
1, s2)) = (1, 0), ∀s′1 ≤ s1, if fG

1 (s2|s1) ≤ fG
1 (s1|s2). (4.53)

For example, when evaluating fG
2 (N,N), if fG

1 (s2 = N |s1 = N) is larger than

fG
1 (s1 = N |s2 = N), then state (N,N) is allocated to network 1. Due to Lemma 4,

the states {(s1, N),∀s1 ≤ N} are all allocated to network 1. Since the unallocated

states so far are {(s1, s2), 0 ≤ s1 ≤ N, 0 ≤ s2 ≤ N − 1}, we can then evaluate

fG
2 (N,N − 1), and so on. In Figure 4.9, we can see that the proposed DP algorithm

can achieve the same performance as the exhaustive search whenK = 2, but requires

only a polynomial time complexity. The greedy algorithm has a worse performance
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since it makes a local optimal decision to determine the thresholds of allocation rules.

In Figure 4.10, different mechanism design approaches are compared for K = 3. It

can be seen that the proposed DP algorithm still outperforms the greedy method.

As discussed in Section 4.4, for a general K the proposed DP algorithm may not

achieve the global optimum. However, with much lower complexity compared to the

exhaustive search, the proposed algorithm can achieve reasonably good results and

thus can serve as an approximate approach.

4.6 Discussion

Although we focus on the wireless access network selection problem in this

chapter, we should notice that the model described in chapter is very general and

can be applied into many other problems with negative network externality. A

closely related scenario is the cell selection problem in cellular networks [5, 41, 84].

When a mobile station desires to inform the cellular system whether it is on the air,

it registers to a base station which corresponds to a cellular cell. In most current

cellular systems, the cell selection process is simply accomplished by a local signal-

to-noise ratio (SNR)-based strategy, which is to detect the SNR of each cell and

choose the cell with the largest SNR [5]. However, such a simple strategy does not

take into account the strategies of others and the negative network externality. The

QoS experienced by a mobile station will be degraded if the limited resources are

shared with a large number of users. The utilization of system resources will also

be degraded since such a strategy results in cellular cells with unbalanced load.
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It can be seen that the cell selection problem has the same structure with

the wireless access network selection problem. Mobile stations sequentially choose

one cellular cell (corresponding to a base station) to register based on the obtained

information about each available cell. The utility of a mobile station is determined

by the expected throughput during the period it stays in the cell. Furthermore,

the instantaneous throughput of a mobile station in a certain cell is affected by the

crowdedness of the cell due to the limited bandwidth and the delay caused by the

scheduling overhead. Thus, a rational mobile station should choose a cellular cell in

consideration of other mobile stations’ decisions to avoid the crowdedness.

4.7 Conclusion

In this chapter, we have studied the wireless access network selection problem

as a stochastic game with negative network externality, where a user decides which

network to connect to by considering subsequent users’ decisions. The problem

is shown to be a multi-dimensional MDP. We propose a modified value iteration

algorithm to obtain the optimal strategy profile for each selfish user. The analysis of

the proposed algorithm shows that the resulting strategy profile exhibits a threshold

structure along each diagonal line. Such a threshold structure can be used to save the

storage space of the strategy profile from O(N2) to O(N logN) in the two-network

scenario. Simulation results are shown to validate the analysis and demonstrate that

rational users will not deviate from the strategy profile obtained by the proposed

algorithm. For the expected utility of the decision maker, the proposed method is
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superior to other approaches. Moreover, its social welfare performance is shown to

be similar to that of the centralized strategy which maximizes the social welfare.

We further investigated truth-telling enforcing mechanism design in the wire-

less access network selection problem. The mechanism design captures the incentive

compatibility and individual rationality constraints while optimizing the utility of

users. The formulated problem as a mixed integer program in general does not

have an efficient solution. By exploiting the optimal substructures, a dynamic pro-

gramming algorithm is proposed to optimally solve the mixed integer programming

problem in the two-network scenario. For the multi-network scenario, the proposed

algorithm can outperform the heuristic greedy approach in a polynomial-time com-

plexity. Finally, simulation results substantiate the optimality in the two-network

case and also demonstrate the effectiveness of the proposed algorithm in the multi-

network scenario.
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Chapter 5

Wireless Network Association Game with Data-Driven Statistical

Modelling

In the previous chapter, the wireless network selection problem is investigated

without considering the strategy of switching to another network, i.e., a user has

to stay in a network until departure once he/she associates with the network. In

addition, the proposed model in Chapter 4 is not justified based on the real-life data

set analysis.

To tackle the wireless network association problem in a practical viewpoint, the

model formulation has to take into account empirical study of user behavior, which

is not possible without real-life data. The pattern and the statistical properties

of user behavior can be extracted from massive amount of wireless LAN traces of

APs available in various environments such as university campus, shopping malls,

restaurants, coffee shops, airports, etc.

Recently, the wireless network association problem has attracted significant

attention in the literature [6, 7, 9, 18, 20, 21, 28, 48, 50, 70, 74, 89, 90, 92, 110, 123]. The

tutorial in [110] provides a comprehensive survey on many existing methods in the

literature, in which utility functions and different attributes such as bandwidth, de-

lay, packet loss, etc., are summarized and compared. One category of network asso-
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ciation is based on centralized methods to optimize the system performance metrics

such as sum rate, minimum rate, or proportional fairness [28,48,89,123]. In [92], an

analytic hierarchy process is applied to decide the relative weights of evaluative cri-

teria set according to user preferences and service applications. In [74], Niyato et al.

study a network-selection algorithm based on population evolution, which requires

a centralized controller, and an algorithm based on reinforcement-learning, where

a user can learn and adapt the decision on network selection to reach evolutionary

equilibrium without any interaction with other users. In [123], the cell associa-

tion and resource allocation are considered jointly, and a distributed algorithm via

dual decomposition is proposed to solve a logarithmic utility maximization prob-

lem. Another category of network association methods is characterized by game

theory, which models strategic interactions among users using formalized incentive

structures [39, 106]. In wireless communications and networking, game theory has

been widely studied in many applications [45,53,66,104,106,115,125,126] including

non-cooperative power control [45], cooperation stimulation [125,126], and spectrum

allocation [53, 115]. In [7], Aryafar et al. investigate the dynamics of network se-

lection games in heterogeneous wireless networks and the convergence properties of

these games. In [18], the network selection is modelled as a congestion game, where

players make decisions simultaneously to optimize the interference and throughput.

The network association problem in [6] is formulated as a non-cooperative game in

which users selfishly minimize an association cost accounting for the path length

and the path interference to reach the gateway.

While most of the existing works study the scenario that users make simulta-
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neous decisions, in this chapter, we consider the network association problem under

the scenario where users make sequential decisions, and to obtain a better long term

utility, users have to consider the negative network externality, i.e., the decisions

of subsequent users, to determine his/her best response strategy. Sequential de-

cisions considering the negative network externality effect are investigated in the

Chinese Restaurant Game (CRG) [54, 107, 108], which studies the optimal decision

and social learning with negative network externality but with a fixed number of

users. In [54,121], the dynamic CRG is proposed to allow users arriving and leaving

stochastically.

In this chapter, we further extend the dynamic CRG in [121] to incorporate the

behavior of switching to another network. We also extract statistical properties of

users’ behaviors in wireless networks by analyzing a data set of wireless LAN traces

collected from Dartmouth campus networks in a span of 4 months. It is validated

that the user arrival event is approximately Poisson distributed. The probability

distribution functions of the number of user arrivals are plotted in Figure 5.1, where

different curves represent the number of user arrivals in different durations. It can

be seen that the behavior of these probability distribution curves is very similar

to the Poisson distribution with different mean values. Furthermore, the waiting

time to departure, i.e., the duration of a session, and the waiting time to switch to

another network appear to be exponential distributions.

With the statistical properties extracted from the wireless LAN traces, we are

able to construct a stochastic model for the wireless access network system. Next, we

show that the problem of finding the best response strategy profile of network asso-
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Figure 5.1: The empirical probability distribution of the number of user arrivals in

different durations measured from the data set.

ciation when arriving and the best response strategy of switching during a session is

a multi-dimensional Markov decision process (M-MDP). A modified value iteration

algorithm is proposed to obtain a solution of an ϵ-approximate Nash equilibrium.

It is observed that the strategy profile obtained by the proposed algorithm has a

threshold structure, which allows a much smaller required space to store the strategy

profile. Simulation results demonstrate the efficiency and effectiveness of the pro-

posed algorithm, i.e., while achieving the best response strategy for the individual,

the proposed algorithm attains similar performance of social welfare compared to

the maximum social welfare strategy.

The rest of the chapter is organized as follows. In Section 5.1, the system model

of the wireless network system is introduced. Section 5.2 describes the formulation of
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the wireless access network association game, the expression of the expected utility,

and the M-MDP. The analysis of the data set is contained in Section 5.3, in which we

evaluate the probability distribution of user inter-arrival time, session time, and the

waiting time to switch to another network. In Section 5.4, data-driven simulation

results are shown to demonstrate the performance of the proposed value iteration

algorithm. Finally, the conclusion is drawn in Section 5.5.

5.1 System Model

In this section, we describe the system model of the wireless access network

association game. With the statistical model of the user arrival being a Poisson pro-

cess and the user departure following an exponential distribution, we can formulate

the wireless access network system as follows. The system consists of K networks,

and network k acts as a server of a finite capacity Nk, i.e., the network is able to

simultaneously serve at most Nk users. For simplicity, it is assumed there is no

buffer or waiting room when a network is fully occupied by users. For simplicity, we

only consider two types of users. The users of type I arrive with arrival rate λ̄0 and

these users are able to choose among K networks. With arrival rate λ̄k, the users

of type II can only choose network k, for k = 1, . . . , K. Although it is feasible to

consider all possible types of users who who can choose a subset of networks, the

description would be too tedious and thus unnecessary. The user departure rate is

denoted as µ̄0 uniformly for all networks. We also define uniformly for all networks

the network-switching rate µ̄1, which means the rate that a user switches to another
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Figure 5.2: State transition diagram of the wireless access network association sys-

tem.

network from his current network.

We consider a discrete time Markov system, where the system state s =

(s1, . . . , sK) takes its value from the state space S = {(s1, . . . , sK)|sk = 0, 1, ..., N, k =

1, . . . , K}, and sk represents the number of users in network k, for k = 1, . . . , K.

The duration of a time unit is T (seconds). The arrival probability of type I users,

denoted as λ0, can be approximated as 1−e−λ̄0T ≈ λ̄0T . Similarly, the arrival prob-

ability of type II users is λk = λ̄kT , the departure probability of a user is µ0 = µ̄0T ,

and the network-switching probability is µ1 = µ̄1T .

The arriving user’s strategy profile σ = {σs|∀s ∈ S} is a mapping from the

aggregate state space to the action space, i.e., σ : {0, 1, ..., N}K 7→ {1, . . . , K}.

The switching user’s strategy profile γ = {γk,s|∀s ∈ S,∀k} is a mapping from the

Cartesian product set {1, . . . , K} × S to the action space, i.e., γ : {1, . . . , K} ×
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{0, 1, ..., N}K 7→ {1, . . . , K}. The system transition probability of an arrival event

is given by

Psys (s+ ej|s) = λj + Ij(σs)λ0, j = 1, . . . , K, (5.1)

where σs denotes the strategy at state s and σs = j means the strategy is to enter

network j. The indicator function Ij(σs) is defined as to be Ij(σs) = 1 if σs = j;

otherwise, Ij(σs) = 0. At state s, since there are sj users in network k and each

user has an independent departure probability, the probability that one user leaves

network j is sjµ0. Thus, the system transition probability of a departure event is

given by

Psys (s− ej|s) = sjµ0, j = 1, . . . , K. (5.2)

The network-switching strategy for state s and network k is denoted by γk,s, and

γk,s = j means the strategy is to switch from network k to network j. The system

transition probability of a network-switching event is then given by

Psys (s− ek + ej|s) = Ij(γk,s)skµ1, j, k = 1, . . . , K. (5.3)

Lastly, the system transition probability of a staying event is given by

Psys (s|s) = 1−
K∑
j=0

λj −
K∑
j=1

sj(µ0 + µ1). (5.4)

Note that the duration T of a time slot should be chosen such that
∑K

j=0 λj +∑K
j=1Nj(µ0 + µ1) ≤ 1, i.e.,

T ≤

(
K∑
j=0

λ̄j +
K∑
j=1

Nj(µ̄0 + µ̄1)

)−1

. (5.5)
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In one time slot, the utility obtained by a user in network k is defined by

the function R(sk), which is a non-increasing function in sk due to the negative

network externality, i.e., the negative effect to the users in a network caused by the

increasing number of users. For example, in a code division multiple access (CDMA)

system where the available frequency spectrum is used at the same time by all users,

R(sk) can be defined as the achievable data rate function, log
(
1 + SNRk

(sk−1)INRk+1

)
,

where SNRk is the signal-to-noise power ratio, and INRk is the interference-to-noise

power ratio in network k. The increase of the number of users causes inter-user

interference (IUI) to each user in the network. Such IUI results in a lower signal-

to-interference-plus-noise power ratio (SINR) and thus a lower achievable data rate

for each user in the network. In other scenarios where the available resource is

allocated in an orthogonal way, e.g., time division multiple access (TDMA) for

time resource allocation, frequency division multiple access (FDMA) for frequency

resource allocation, or power control for total transmit power allocation. In these

scenarios, the utility R(sk) can be defined by a simple fraction Ck

sk
, where Ck denotes

the total amount of the entire available resource and Ck

sk
is the amount of resource

obtained by one user in the network.

5.2 Wireless Access Network Association Game

In this section, the wireless access network association game is formulated by

first defining the utility function and deriving the expected utility function using

the Bellman equation, based on which, the best response strategy is given. The net-
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work association problem is then shown to be a multi-dimensional Markov decision

process, for which a modified value iteration algorithm is proposed.

5.2.1 Expected Utility

The expected utility of a user arriving and choosing network k to enter when

the system state is s is denoted by Vk(s), which can be expressed by definition as

follows.

Vk(s) = E

[
∞∑
t=0

(1− µ0)
tRkt(st)

]
, (5.6)

where kt denotes the network the user stays in at time slot t, with the initial condition

k0 = k. Since µ is the probability that the user leaves the current network in one

time slot, then (1 − µ) is the probability that the user stays in the network in one

time slot. Thus, the value (1− µ) can be regarded as the discounting factor for the

future utility as time increases.

The expression in (5.6) can be simplified into a set of Bellman equations [79],

i.e.,

Vk(s) = Rk(s) + (1− µ0)
∑
k′,s′

P (k′, s′|k, s)Vk′(s
′), k = 1, . . . , K, (5.7)

where the transition probability P (k′, s′|k, s) denotes the probability that in the

current time slot, a user is in network k and the system state is at s, and in the

next time slot, the system state becomes s′ and the user switches to network k′ if

k′ ̸= k, or the user keeps staying in the same network if k′ = k. Considering different

events as in the system transition probability, the conditional transition probability
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is given by

P (k′, s′|k, s) =

λj + Ij(σs)λ0, if k′ = k, s′ = s+ ej, ∀j,

sjµ0, if k′ = k, s′ = s− ej,∀j ̸= k,

(sk − 1)µ0, if k′ = k, s′ = s− ek,

Ij(γk,s)(sk − 1)µ1, if k′ = k, s′ = s− ek + ej,∀j ̸= k,

Ij(γk,s)µ1, if k′ = j, s′ = s− ek + ej,∀j ̸= k,

1−
∑K

j=0 λj −
∑K

j=1 sj(µ0 + µ1) + µ0, if k′ = k, s′ = s,

0, otherwise.

(5.8)

Notice that there are slight differences in the departure probability and the switching

probability between the system transition probability (5.2), (5.3) and the conditional

transition probability (5.8).

5.2.2 Best Response Strategy

In the wireless access network association game, users adopt the best response

strategy to maximize his own expected utility due to the selfish nature. A user

makes a decision after he arrives and observes the system state s. The strategy

leads the user into certain network k and results in an expected utility Vk(s + ek).

In subsequent time slots, the user may change from network k to another network

based on γk,s. When observing the state s, the best response arriving strategy σs
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has to satisfy

σs = argmax
j

Vj(s+ ej), ∀s ∈ S. (5.9)

Similarly, when observing the state s, a switching user will choose the best response

strategy γk,s, which has to satisfy

γk,s = argmax
j

Vj(s− ek + ej), ∀s ∈ S, ∀k. (5.10)

It can be seen that with the arriving user’s strategy profile satisfying (5.9) and

the switching user’s strategy profile (5.10), no user can obtain a higher expected

utility by unilateral deviation to any other strategy. Therefore, the strategy profile

satisfying (5.7)-(5.10) is a Nash equilibrium of the stochastic game.

From (5.9) and (5.10), it can be observed that

γk,s = σs−ek , ∀s ∈ S, ∀k. (5.11)

Thus, the best response switching strategy in network k at state s can be interpreted

as as the best response arriving strategy at state s − ek, i.e., the state without

the switching user in network k. In other words, the switching behavior can be

equivalently considered as leaving the current network and arriving as an arriving

user. From this perspective, the two best response strategy profiles are exactly the

same, and the switching user’s strategy γk,s in (5.8) can be replaced by σs−ek .

5.2.3 Modified Value Iteration Algorithm

The problem of solving the strategy profile satisfying (5.7)-(5.10) is a Multi-

dimensional Markov Decision Process (M-MDP) problem, in which multiple po-
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tential functions are associated with each system state. For a conventional MDP

problem [79], there is only one single potential function, by directly optimizing

which using the theory of dynamic programming (DP) [11], the optimal strategy

can be found with a low complexity. In an M-MDP, the dependency of the multiple

potential functions can be expressed in a vector form:

V1(s)

V2(s)

...

VK(s)


=



R1(s1)

R2(s2)

...

RK(sK)


+ (1− µ)



pT
1

pT
2

...

pT
K





v1

v2

...

vK


, (5.12)

where pk and vk denote vectors comprising P (k′, s′|k, s) and Vk(s
′) as elements,

k = 1, . . . , K. The transpose operator is denoted by (·)T . DP cannot be directly

applied in solving such a problem since the arriving strategy σs and the switching

strategy γk,s are determined by comparing Vk(s+ ek) for all k as in (5.9) and (5.10)

instead of optimizing a single potential function. Note that different from the vector

form given in [54,121], the probability matrix in (5.12) is more general since it allows

non-block-diagonal terms due to the switching behavior, while the probability matrix

in [54,121] only has block-diagonal terms.

As described in Section 5.2.2, the best response strategy profile σ has to

satisfy (5.9) given the expected utilities {Vk}Kk=1. Given a strategy profile σ, the

expected utilities {Vk}Kk=1 can be obtained using (5.7) or (5.12), where the condi-

tional transition probability P (k′, s′|k, s) is a function of the arriving strategy σs and

the switching strategy σs−ek . The expected utility of a user is influenced by other

users’ strategies through the transition probabilities as can be seen in the vector
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form (5.12). To find the best response strategy profile σ satisfying (5.7)-(5.10), we

propose a modified value iteration algorithm to solve the problem by iteratively up-

date the strategy profile and the expected utilities, i.e., at the n-th iteration, given

the expected utilities, the strategy profile is updated as

σ(n+1)
s = argmax

k
V

(n)
k (s+ ek), ∀s ∈ S. (5.13)

The expected utility functions can be obtained by solving

V
(n+1)
k (s) = Rk(sk) + (1− µ)

∑
k′,s′

P (n+1) (k′, s′|k, s)V (n+1)
k′ (s′),

∀s ∈ S,∀k ∈ {1, . . . , K}, (5.14)

where the transition probability P
(n+1)
k (s′|s) is updated using the strategies obtained

from (5.13), i.e.,

P (n+1) (k′, s′|k, s) =

λj + Ij(σ
(n+1)
s )λ0, if k′ = k, s′ = s+ ej, ∀j,

sjµ0, if k′ = k, s′ = s− ej,∀j ̸= k,

(sk − 1)µ0, if k′ = k, s′ = s− ek,

Ij(σ
(n+1)
s−ek

)(sk − 1)µ1, if k′ = k, s′ = s− ek + ej, ∀j ̸= k,

Ij(σ
(n+1)
s−ek

)µ1, if k′ = j, s′ = s− ek + ej,∀j ̸= k,

1−
∑K

j=0 λj −
∑K

j=1 sj(µ0 + µ1) + µ0, if k′ = k, s′ = s,

0, otherwise.

(5.15)
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In (5.14), the problem of the expected utilities involves a set of linear system,

which consists of KN2 unknown variables corresponding to {V (n+1)
k (s), ∀s,∀k} and

KN2 equations, which can be solved by either matrix inversion or linear program-

ming. Another approach is the value iteration algorithm [79], which first initializes

V
(n+1)
k (s) as an arbitrary value such as zero and iteratively updates itself using

(5.14). Since the iteration function is a contraction mapping, it is guaranteed to

converge to a unique fixed point. However, the convergence may be slow if the

system space is large since it takes longer for the effect of a strategy to propagate

through the whole system.

The proposed algorithm iteratively updates the strategy profile σ and the

expected utilities Vk(s) until converged. When the proposed algorithm converges, it

is observed that there exists a threshold structure of the strategy profile. In [121], a

theoretical proof of the threshold structure is given for the special case of K = 2 and

µ1 = 0, i.e., in a two-network scenario with no switching strategy allowed. Although

it is difficult to theoretically prove the threshold structure for the general cases, in

Section 5.4, by numerical simulations we have always observed a threshold structure

of the strategy profile for all cases.

However, the strategy profile may not converge but oscillates due to the hard

decision rule in (5.13). The non-convergence occurs when the strategy of a state

near a threshold of strategy change oscillates between different choices each time

when the expected utility is updated. When such a situation happens, the expected

utilities corresponding to different strategies are very close to each other. Hence,

to tackle the problem, we relax the hard decision rule by allowing a small region of
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tolerance for switching among the strategies [82], which leads to the soft decision

rule as follows.

σ(n+1)
s =


σ
(n)
s , if V

(n)

σ
(n)
s

(s+ e
σ
(n)
s
) ≥ maxk V

(n)
k (s+ ek)− ϵ,

argmaxk V
(n)
k (s+ ek), if V

(n)

σ
(n)
s

(s+ e
σ
(n)
s
) < maxk V

(n)
k (s+ ek)− ϵ,

(5.16)

where ϵ > 0 is a small constant. Table 5.1 summarizes the proposed modified

value iteration algorithm for the M-MDP. Notice that the algorithm stops when an

equilibrium is found or all the strategy profiles are searched. By definition, when

the algorithm obtains a solution, the resulting strategy profile is an ϵ-approximate

NE [39], in which the strategy at each state has an expected utility that is at most ϵ

less than that of any other strategy. Note that there may be multiple ϵ-approximate

NEs especially for a larger ϵ when a larger region of tolerance is allowed for switching

among the strategies.

We note that it is possible the multiple Bellman equations for an M-MDP can

be modelled as a single Bellman equation by defining an equivalent model, where

the states is denoted as (s, j), for j = 0, 1, . . . , K and s ∈ S. In this model, when

a user arrives at state s1 in the original M-MDP model, equivalently, she arrives at

state (s1, 0) in the MDP. The user then decides to enter network k with the largest

expected utility of transiting to state (s1, k), among all networks k = 1, . . . , K.

The subsequent state transitions only involve transitions among (s, k), ∀s ∈ S.

Such a reduction from multi-dimensional Bellman equations to a single-dimensional

Bellman equation, however, does not mean that M-MDP can be reduced into a
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Table 5.1: Modified Value Iteration Algorithm

(i) Initialize: V
(0)
k (s) = 0, ∀k ∈ {1, . . . , K}, ∀s ∈ S. T = ϕ.

(ii) Loop :

1. Update {σ(n+1)
s } by (5.16).

If {σ(n+1)
s } = {σ(n)

s }, then stop loop.

else if {σ(n+1)
s } ∈ T , then

choose a {σs} ∈ T̄ , and let {σ(n+1)
s } = {σs}.

end if

T = T ∪ {σ(n+1)
s }.

2. Update {P (n+1)(k′, s′|k, s)} by (5.15).

3. Solve {V (n+1)
k (s)} in (5.14) by value iteration or linear

programming.

Until T̄ = ϕ or {σ(n+1)
s } = {σ(n)

s }.

conventional MDP, in which the strategy of a certain state only affects the transitions

to its adjacent states instead of those of nonadjacent states. In this equivalent model,

since the strategies are made by states (s, 0), ∀s, the transition probability of a state

(s, k), k ̸= 0, does not only depend on the state itself, but also is determined by

other states. Although the equivalent model has only one Bellman equation, such a

dependency does not simplify but complicate the problem.

5.2.4 Mechanism Design

In the previous section, we provided an algorithm, from the perspective of

users, to search for the best response strategy profile given the system parameters,

including the immediate utility function Rk(sk), the user arrival rate λk, the user

departure rate µ0, and the network-switching rate µ1. On the other hand, for a

network system operator, it is desirable to design some of the system parameters
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such that the resulting best response strategy profile is preferred to the overall

network system. In the literature of game theory, such a scenario is called mechanism

design, in which the system operator constructs an environment or a system setting

by taking into account users’ rationality and incentives to achieve the system’s

objective.

In the system model described in Section 5.1, the arrival rate, departure rate,

and network-switching rate are not controllable by the system operator. However,

the immediate utility function is possible to be managed by means of resource al-

location. In the following, we provide an example to demonstrate how to design a

mechanism such that the resulting strategy profile is as desired.

Consider a network system with orthogonal resource allocation such as TDMA

or FDMA, the utility can be modelled as a linear function Rk(sk) =
Ck

sk
, where Ck

denotes the available resource in network k, and each of the sk users in network k

can obtain Ck

sk
per unit time. Given the strategy profile σ = {σs, ∀s}, the problem

of designing Ck, i.e., managing appropriate resource to different networks, can be

formulated as the following feasibility problem with variables C1, . . . , CK and Vk(s),

∀k, ∀s.

PMD : Find (C1, . . . , CK) (5.17)

s.t. Vk(s) = Rk(sk) + (1− µ0)
∑
k′,s′

P (k′, s′|k, s)Vk′(s
′), ∀k, ∀s, (5.18)

Vσs(s+ eσs) ≥ max
k

Vk(s+ ek)− ϵ,∀s. (5.19)

Note that given the strategy profile, the conditional probability P (k′, s′|k, s) is a

constant in the above feasibility problem. Therefore, the constraints of the feasibility
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problem PMD comprise KΠK
k=1Nk equalities and ΠK

k=1Nk inequalities linear in the

variables, and thus the problem is a linear programming problem, which can be

solved in polynomial time using an interior-point algorithm.

For nonlinear utility functions such as Rk(sk) = log
(
1 + SNRk

(sk−1)INRk+1

)
, it is

possible to similarly formulate the feasibility problem with variables SNRk and INRk

instead of Ck in (5.17). However, the resulting feasibility problem has non-convex

constraints and hence it is difficult to solve. Optimization techniques such as convex

approximation or global search may be applied but it is beyond the scope of this

chapter.

5.3 Data Set Analysis

Previous work on WLAN trace analysis [1,10,12,23,47,76,88,101,111] focus on

different aspects, such as uplink/downlink traffic modelling, user mobility patterns,

and geographic distribution of users. In [76], the arrival processes of users can be

modelled as being generated by time-varying Poisson processes through a nonlinear

transformation. It is not clear whether such a transformation preserves the Poisson

distribution. In [23], the user occupancy distribution of an AP is shown to be a

Poisson distribution. However, a Poisson user occupancy distribution which does

not imply the user arrival process is Poisson.

In this chapter, we are interested in the statistical modelling for the events

related to the association between users and APs. Specifically, we aim to validate

the probability distribution of the user arrival, the waiting time to departure, the
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waiting time to switch network. We adopt actual wireless network data drawn

from CRAWDAD [61], a well known publicly available archive of wireless data re-

source for the research community, and analyze the probability distribution of user

inter-arrivals, session time, and the switching frequency. In the following, we first

introduce the basic information of the data set, our methodology, and the results of

the analysis.

5.3.1 Data Set Description

The data set we use is the CRAWDAD Dartmouth campus WLAN trace

[47, 60, 61], which includes syslog (system message log), SNMP (Simple Network

Management Protocol polls), and tcpdump (TCP/IP packet analysis) during Fall

term 2003 and Winter term 2004 in Dartmouth College. Both syslog and SNMP

traces recorded the user association information with a timestamp, the user’s MAC

address, and the AP’s name. However, we observe that sometimes a user’s asso-

ciation record in the syslog traces is repeated for several times in a short period,

and very often a user leaves without showing the record of a disassociation. As also

noted in [47], most disassociation messages do not show a successful disassociate,

but report an error that it attempts to disassociate with a wrong AP. Thus, it is

rather difficult to uncover the true information of users’ behavior by analyzing the

syslog traces.

On the contrary, The SNMP traces, which collected the Simple Network Man-

agement Protocol (SNMP) polling every AP every 5 minutes, are more reliable for
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our purpose since each poll contains the instantaneous information of which user

is currently connected to the AP. Although the 5 minutes period may be coarse at

first sight, from our statistical analysis below, we find it sufficient for estimating the

relevant parameters of the M-MDP system model. The traces were recorded by a

central server using the Simple Network Management Protocol to poll each of the

560 APs in 6 different types of buildings (Academic, Administrative, Residential,

Social, Library, and Athletic) on campus from November 1st, 2003 to February 28th,

2004. The SNMP query collected the AP-related information including the number

of inbound and outbound bytes, packets and errors, and the users currently or re-

cently associated with a given AP, and the user-related information including MAC

and IP addresses, signal strength and quality, the number of inbound and outbound

bytes, packets and errors.

5.3.2 Statistical Analysis

We plot the number of user arrivals during the 4-month period in the lower part

of Figure 5.3, in which we can see that there are two holes with zero arrivals when the

SNMP poller was disabled due to maintenance. One is during the Christmas holidays

and the other is in late February. Most of the time, the number of arrivals shows a

regular periodicity as expected. Relatively fewer users arrive during weekends and

holidays. The upper part of Figure 5.3 shows the average number of arrivals per

hour in a weekday and a weekend day. Also as expected, the user arrivals occur more

in the afternoon on weekdays than on weekends. Based on the above observation,
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Figure 5.3: The upper part shows the average number of user arrivals per hour in

a weekday and in a weekend day; the lower part shows the number of user arrivals

per day during the 4-month period.

in the following analysis, we only consider the abundant traces on weekdays to have

richer and consistent data. Only traces between 9AM and 5PM are extracted so

that the typical behavior during the daytime can be captured.

An intuitive definition of a user arrival is the event that the user associated

with an AP is not associated in the previous time slot. However, such a definition

does not take into account of the scenario that there may be a time slot when the

user is not recorded by any AP but the user is switching from an AP to another AP.

Therefore, we define a user arrival by the event that a user is associated with an

AP in a type of network and the user is not associated with any AP in the network

in the past 2 time slots. Similarly, a user departure is defined by the event that a
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Figure 5.4: The probability density function of the inter-arrival time versus the

exponential distribution with the same mean value.

user associated with an AP in a type of network becomes not associated with any

AP in the network in the next 2 time slots. If a user is associated with multiple

APs in one time slot, a switching event is defined to occur with a duration of 0. A

switching event also occurs if the associated AP of a user has changed after k time

slots to another AP before a departure event occurs. A session is then defined by

the time between a user arrival and a departure with only switching events allowed

in between.

Figure 5.4 shows the empirical probability density function (pdf) of the inter-

arrival duration versus the theoretical exponential distribution with the same mean

as the data set. It can be observed that the exponential distribution can provide a
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Figure 5.5: The quantile-quantile plot of the probability mass function of the number

of user arrivals in 3 hours versus the Poisson distribution with the same mean value.

very good approximation to the empirical pdf for all 6 types of buildings. Compared

to the theoretical exponential distribution, The empirical pdf tends to decrease

faster in the middle range of the inter-arrival time, but when the inter-arrival time

becomes larger, the tail of the empirical pdf stays longer. Such an tendency is

especially prominent for Academic Buildings. We speculate that this may be due to

the regular pattern of the activities on campus, where the durations of classes and

break time are usually fixed. Hence, such a pattern may cause the user arrival event

not as random than expected. Except this minor discrepancy, from Figure 5.4, the

exponential distribution is still a satisfactory approximation.
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Figure 5.6: The probability density functions of a session time and the waiting time

to switch to another network.

In Figure 5.5, we plot the quantile-quantile plot [113] of the empirical prob-

ability mass function (pmf) of the number of user arrivals in 3 hours versus the

theoretical Poisson distribution with the same mean value of the data set. The

quantile-quantile (Q-Q) plot is a graphical method for comparing two probability

distributions. If the two distribution are similar or linearly related, the points will

approximately lie on a straight line. If the two distributions are exactly identical,

the points on the Q-Q plot should lie on the line x = y. In the Q-Q plots, the first

and third quartiles are connected and extrapolated as a line to illustrate the degree

of similarity of the empirical pmf to the Poisson distribution. From the figure, we

can see that the empirical pmf has a high similarity to a Poisson distribution.

Figure 5.6 shows the pdfs of a session time and the waiting time to switch

to another network. In each plot, we also compare the empirical curve with the

exponential distribution with the same mean value. We can see that for the session
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time distribution, there are a few peaks which may indicate some fixed patterns of

activities on campus. As discussed above, there may be a relatively high probability

that the session time is equal to the duration of a class or break time between classes,

e.g., 50 or 15 minutes. Except those peaks, the general trend of a session time still

approximately follows an exponential distribution with the same mean value. For

the waiting time to switch network, the pdf decreases faster in the middle range and

it has a longer tail when the time increases compared to an exponential distribution.

From the analysis of these statistical properties, we can model the realistic

user arrivals as a Poisson distribution, and thus the inter-arrival time as an expo-

nential distribution; the session time and the waiting time to switch network can be

modelled as exponential distributions. Therefore, we have the Markov state model

as described in Section 5.1, in which a state in the wireless network system can

be represented by the numbers of users in different networks without knowing the

history of user arrivals due to the Markovian property. The departure probability

µ0 for a user can be approximated by the inverse of the mean session time, i.e., µ̄0T ;

the switching probability µ1 can also be approximated by the inverse of the mean

waiting time to switch network, i.e., µ̄1T .

Table 5.2 summarizes the empirical average values of the parameters for the

M-MDP model, including the mean inter-arrival time λ̄−1, mean session time µ̄−1
0 ,

and the mean switching time µ̄−1
1 , for different types of campus networks and the

overall, that is, the average of all types of networks. Note that a unit time slot is 5

minutes. Thus, we may interpret the ’overall’ row as: on average, every 26 minutes

there is a user arrival event; each arrival stays for a session of 70 minutes in the
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Table 5.2: Averaged empirical parameters for different types of campus networks.

Types λ̄−1 µ̄−1
0 µ̄−1

1

Residential 6.1460 12.7200 7.4541

Library 6.3522 12.2097 8.2054

Administrative 9.5474 14.0074 8.4835

Academic 3.7513 13.4151 6.3910

Athletic 6.2693 16.6079 6.3641

Social 6.7630 12.2915 6.4784

Overall 5.1096 13.9891 6.5283

network before departure; during a session, every 33 minutes the user switches to

another AP.

5.4 Data-Driven Simulation

In this section, a data-driven numerical simulation is conducted for the wireless

access association game described in Section 5.2. Based on the data set analysis in

section 5.3, we adopt most of the system parameters such as users’ arrival, departure,

and switching rates from Table 5.2. In the following simulation, the parameters are

chosen as K = 2, µ̄−1
0 = 13.9891, µ̄−1

1 = 6.5283, λ̄−1
0 = 6.763, λ̄−1

1 = 67.3669,

λ̄−1
2 = 5.1096, , T = 1, N = 4, ϵ = 0.05. Note that we choose λ̄−1

1 to be much

larger than λ̄−1
2 , since in such a scenario, the proposed best response strategy has

more significant gain over other methods. The utility function Rk(sk) is defined to

be the achievable data rate log
(
1 + SNRk

(sk−1)INRk+1

)
, where SNRk = 50, k = 1, 2, and

INRk = 10, k = 1, 2. In the following, we will compare the proposed best response

147



strategy with other possible strategies including the random strategy, the myopic

strategy, and the centralized strategy. The random strategy is to randomly (with

uniform probability) select a network among all networks. The greedy strategy is to

choose the network with the best immediate utility instead of the long term expected

utility, i.e., σmyopic
s = argmaxk Rk(sk). The maximum social welfare strategy is

the social welfare optimizer, i.e., the strategy profile that results in the globally

maximum system throughput
∑

s

∑
k skRk(sk), which is the maximum amount of

total achievable data rate from the entire network system. In the simulation, the

maximum social welfare strategy profile is found by exhaustive searching all possible

strategy profiles. Since the complexity is very high (O(KNK
)) even for K = 2, we

only simulate small N to demonstrate the comparison between different strategies.

In Figure 5.7, we verify the individual rationality by examining the relation

between the deviation probability and the individual expected utility. It can be

seen that if a user deviates from the proposed best response strategy profile, he/she

can only obtain a worse individual expected utility; while for the maximum social

welfare strategy profile, a user may be able to earn a better payoff by unilateral

deviation to another strategy, since the objective of the maximum social welfare

strategy is to optimize the social welfare without consideration of the individual

rationality.

We compare the individual expected utility for different strategies in Figures

5.8. Using the greedy method as the baseline, the performance of each strategy is

normalized with the corresponding value of the greedy method. Since each user opti-

mizes his/her own expected utility, the proposed best response strategy as expected
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Figure 5.7: The individual expected utility versus probability of deviation with the

proposed best response strategy and the maximum social welfare strategy.

performs the best among all other strategies in terms of the individual expected util-

ity. When λ̄0 is higher, i.e., more users who are able to choose among the networks,

the maximum social welfare strategy provides worse individual expected utility due

to the crowdedness of users and thus the conflict between maximizing the social wel-

fare and the individual performance. Without taking into account any information,

the random strategy is inferior to all others.

In Figure 5.9, the social welfare performance (the system thoughput, i.e., the

sum of the expected utility of each user) of different strategies is compared. Since

the maximum social welfare strategy is the global maximizer among all the strategy

profiles, it attains the best performance with certainty. We can see that the proposed

best response strategy is able to achieve a similar performance to the maximum social

149



0.02 0.04 0.06 0.08 0.1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

λ̄0

In
di

vi
du

al
 E

xp
ec

te
d 

U
til

ity
 (

no
rm

al
iz

ed
 b

y 
th

e 
gr

ee
dy

)

µ̄−1

0
= 13.9891, µ̄−1

1
= 6.5283, λ̄−1

1
= 67.3669, λ̄−1

2
= 5.1096

 

 

Greedy
Best Response (Proposed)
Maximum Social Welfare
Random
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ferent strategies including the greedy method, the proposed best response strategy,

the centralized maximum social welfare strategy, and the random strategy.
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Figure 5.9: Social welfare (sum expected utility) comparison in a 2-network system

with different strategies including the greedy method, the proposed best response

strategy, the centralized maximum social welfare strategy, and the random strategy.

welfare strategy when λ̄0 is small, i.e., when the system is less crowded. When λ̄0

is higher, the performance becomes a bit worse but it is still better than the greedy

strategy and the random strategy. It is interesting that although the proposed best

response aims to optimize each user’s own expected utility by considering other

users’ strategies, it has a similar social welfare performance to the global optimum.

Figure 5.10 shows the feasible region of (C1, C2) in the mechanism design
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problem in (5.17), where the strategy profile {σs} is given as

σ =



1 1 1 1 1

2 1 1 1 1

2 2 2 1 1

2 2 2 2 1

2 2 2 2 2


, (5.20)

where [σ]i,j = σ(i,j) denotes the strategy at state s = (i, j). Since the constraints are

all linear in C1 and C2, the resulting feasible region is a 2-dimensional polytope, i.e.,

a convex region with piece-wise linear boundaries. The system operator can then

manage the available resource to design C1 and C2 such that the desired strategy

profile is a best response for the users. Note that the feasible set may not always be

non-empty. Thus, the mechanism design for the wireless network association may

be used to check the existence of the best response strategy profile.

5.5 Conclusion

In this chapter, we first used the four months trace of 560 APs at Dartmouth

College to validate the statistical characteristics of the user arrival process being

Poisson, the session time, and the waiting time to switch network being exponential.

Based on these observations, we constructed a Markov system model to investigate

the relation between users’ strategies and their expected utilities. It has been shown

that finding best response strategy, i.e., the approximate Nash equilibrium, requires

solving a multi-dimensional Markov decison process. We proposed a modified value
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Figure 5.10: The feasible region of (C1, C2) in the mechanism design problem PMD

in (5.17).

iteration algorithm to iteratively search for the solution. Data-driven simulations

were conducted to verify the individual rationality, i.e., unilateral deviation from the

best response strategy only leads to a decrease of the individual expected utility.

Compared with other strategies, the proposed best response strategy can achieve

better individual expected utility while also has a similar performance in the social

welfare (the sum of the individual expected utilities) to the maximum social welfare

strategy.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the first part of this dissertation, we proposed advanced waveform design for

multi-user time-reversal communication systems to tackle the interference problem

from the base-station’s perspective. We tackled the sum achievable rate optimization

problem, and the joint waveform design problem with interference precancellation.

In the second part of this dissertation, we investigated the wireless network selection

problem from a user’s perspective. i.e., how the strategy profile of users to associate

with a wireless network affecting each individual’s long term expected utility. More

specifically, we addressed the following problems in this dissertation.

In Chapter 2, we explored the weighted sum rate optimization problem by

transmit waveform design for the MIMO time-reversal multiuser downlink commu-

nication systems. We proposed a new power allocation scheme called Iterative SINR

Waterfilling which, instead of directly allocating the power, the SINRs are first al-

located to maximize the weighted sum rate. With the allocated target SINRs,

the corresponding power allocation can be easily determined. For multiple data

streams, Iterative Power Waterfilling is further proposed. Iterative algorithms al-
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ternately optimize the transmit waveform and the power allocation for each user.

Both of the proposed sum rate optimization algorithms significantly outperform

other traditional approaches such as zero-forcing and time-reversal waveforms. We

also demonstrated that Iterative SINR Waterfilling outperforms Iterative Power

Waterfilling in the scenario of high interference, e.g., large number of users or high

SNR region. With the optimal single-user waveform, Iterative SINR Waterfilling

is shown to achieve near-optimal performance for multi-user scenario by comparing

with exhaustively-searched global optimum.

In Chapter 3, we proposed the joint waveform design and interference pre-

cancellation for TR communication systems by exploiting the symbol information

available at the transmitter. It was shown that the optimal joint design is to pre-

cancel the causal interference by a feedback filter and to suppress the anti-causal

interference using the waveform. For the multi-user scenario, the causality of both

ISI and IUI determines its similar role in the joint design. The resulting multi-user

waveform design is a non-convex optimization problem, for which we proposed two

iterative algorithms, including an alternating optimization algorithm and a gradient

method. Both algorithms can be guaranteed to converge to sub-optimal solutions.

Simulation results were shown to validate the convergence of the proposed algorithms

and demonstrate the effectiveness of the proposed joint design, especially in the high

interference regime.

In Chapter 4, we studied the wireless access network selection problem as

a stochastic game with negative network externality, where a user decides which

network to connect to by considering subsequent users’ decisions. The problem

155



is shown to be a multi-dimensional MDP. We propose a modified value iteration

algorithm to obtain the optimal strategy profile for each selfish user. The analysis of

the proposed algorithm shows that the resulting strategy profile exhibits a threshold

structure along each diagonal line. Such a threshold structure can be used to save

the storage space of the strategy profile from O(N2) to O(N logN) in the two-

network scenario. Further, we investigated truth-telling enforcing mechanism design

in the wireless access network selection problem. The mechanism design captures the

incentive compatibility and individual rationality constraints while optimizing the

utility of users. By exploiting the optimal substructures, a dynamic programming

algorithm is proposed to optimally solve the formulated problem in the two-network

scenario. For the multi-network scenario, the proposed algorithm can outperform

the heuristic greedy approach in a polynomial-time complexity. Finally, simulation

results substantiate the optimality in the two-network case and also demonstrate

the effectiveness of the proposed algorithm in the multi-network scenario.

Lastly, in Chapter 5, we first analyzed the four months trace of 560 APs at

Dartmouth College to validate the statistical characteristics of the user arrival pro-

cess being Poisson, the session time, and the waiting time to switch network being

exponential. Based on these observations, we constructed a Markov system model to

investigate the relation between users’ strategies and their expected utilities. It has

been shown that finding best response strategy, requires solving a multi-dimensional

Markov decison process. We proposed a modified value iteration algorithm to itera-

tively search for the solution. Data-driven simulations were conducted to verify the

individual rationality, i.e., unilateral deviation from the best response strategy only
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leads to a decrease of the individual expected utility. Compared with other strate-

gies, the proposed best response strategy can achieve better individual expected

utility while also has a similar performance in the social welfare (the sum of the

individual expected utilities) to the maximum social welfare strategy.

6.2 Future Work

To meet the exponentially increasing demand of wireless data, there are nu-

merous challenges need to be addressed, and the development in surmounting these

challenges will not only lead to fruitful research, but also benefit enhancing human

life. In this dissertation, the waveform design problem and the network selection

problem can be further studied in many perspectives as follows.

First, we have made several assumptions for the waveform design problem to

better elucidate the proposed ideas of solving the problems. In practice, many pos-

sible impairments such as timing synchronization error, channel estimation error,

carrier/sampling frequency offset, DC offset, and IQ imbalance, can weaken the as-

sumptions and degrade the performance. Therefore, it is important to study the

waveform design problem with consideration of these impairments. For example, the

channel knowledge at the transmitter cannot be perfect due to all the impairments

occurring when estimating the channel impulse response. To tackle the channel es-

timation error, the robust waveform design optimization problem can be formulated

and a low complexity algorithm should be sought by approximating and exploiting

the similar structure of the non-robust waveform design problem.
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In the joint waveform design with interference pre-cancellation, the proposed

joint waveform design for the multi-antenna scenarios can be attained by utilizing the

idea of pre-cancelling the causal multi-antenna interference and suppressing the anti-

causal multi-antenna interference. The channel information in the interference pre-

cancellation is more critical since the interference compensation in a wrong direction

can lead to a catastrophic interference construction. Thus, the robust joint waveform

design with interference pre-cancellation can also be investigated.

For the network selection problem, we proved the threshold structure of the

best response strategy profile in the two-network scenario with switching probability

being 0. From the simulation, the threshold structure is always observed. Thus, it

still remains to prove the existence of such a structure in more general scenarios.

Moreover, in this dissertation, we have analyzed real-world data and conducted data-

driven simulation to validate the proposed best response strategy for the wireless

access network selection game. However, it is of interest to know how the proposed

method performs in real-life practice. It may be possible to conduct such experi-

ments using programmed wireless devices to verify the effectiveness of the proposed

best response strategy by measuring the expected throughput of different strategies.
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