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Continuous monitoring of vital signs (e.g., respiration and heart rate, heart

rate variability, etc.) is critical for early detection and prevention of potentially

fatal diseases. Existing solutions usually require users to wear dedicated de-

vices such as wrist-worn sensors or chest straps to physically contact with human

body, which is uncomfortable for users and sometimes may cause skin allergies.

With the rapid development of the Internet of Things (IoT), wireless sensing has

gained increasing attention in recent years because of the ubiquitous deployment

of wireless devices. It has been proved that the presence of human will affect

wireless signal propagation, enabling the functionality of wirelessly monitoring

human subjects by analyzing the electromagnetic (EM) wave.

Despite of the wide variety of IoT devices, most of them are equipped with

WiFi, which is a very mature and cost-effective connectivity solution. More-

over, as the next-generation wireless communication technique, millimeter wave

(mmWave) radio has become available on home routers, vehicles, etc., to achieve



higher performance (e.g., larger bandwidth, higher directionality). Motivated by

the increasing demand of monitoring vital signs as well as the development of

IoT, in this dissertation, we propose four wireless sensing systems to monitor

vital signs leveraging the channel information of commercial devices.

In the first part, using the Channel State Information (CSI) of a single pair

of commercial WiFi devices, a novel system is proposed to continuously track the

breathing rates of multiple persons without requiring prior knowledge of crowd

number. By leveraging both the spectral and temporal diversity of the CSI, the

proposed system can correctly extract the breathing rate traces of multiple users

even if some of them merge together for a short time period. Furthermore, by

utilizing the breathing traces obtained, the crowd number can be estimated for

the occupancy level estimation in the smart home or smart office scenario.

In the second part, we propose a multi-person Respiration Rate (RR) as well

as Heart Rate (HR) monitoring system leveraging the Channel Impulse Response

(CIR) of a 60GHz WiFi. A calibration-free object detector is first designed to iden-

tify static objects, stationary human subjects and human in motion using both

the amplitude and phase of the CIR measurement. To get robust HR estimations

corresponding to stationary human subjects, the respiration signal is first elimi-

nated from the phase of the CIR measurement before obtaining the spectrogram

of heartbeat signal. Dynamic programming is further adopted to get the final

estimation of HR by exploiting both the temporal and spectral information. Ex-

perimental results demonstrate promising performance of the proposed system,

including the Non-Line-of-Sight (NLOS) scenario.



To further get finer information of heartbeat signal, in the third part, we

propose mmHRV, the first multi-user Heart Rate Variability (HRV) monitoring

system, using a commercial mmWave Frequency-Modulated-Continuous-Wave

(FMCW) radar. We first develop a calibration-free target detector to identify the

number of users and their locations. Then the heartbeat signal of each user is

obtained by optimizing the decomposition of the composite phase measurement

modulated by the chest movement. The exact time of heartbeats are estimated

by identifying the peak location of the estimated heartbeat signal, and Inter-Beat

Intervals (IBI) can be further derived to evaluate HRV. Extensive experiments

have been conducted to explore the influence of different settings, including the

distance between human and device, user orientation, incidental angle and NLOS

setting, etc..

In the final part of this dissertation, we propose a driver vital sign moni-

toring system built upon a commercial FMCW radar. The system first eliminates

driver’s motion artifacts by a two-step motion compensation module. Then the

respiration and heartbeat signals are estimated simultaneously by jointly decom-

posing the phase measurement over all range-azimuth bins containing vital sig-

nals. The RR, HR and IBI are further derived using the estimated respiration and

heartbeat signals. We evaluate the system performance in real driving environ-

ment, where the impact of pavement condition, device location as well as motion

type are explored in the experiment.
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Chapter 1: Introduction

1.1 Motivation

In recent years, human health monitoring technologies have gained more

and more attention to help people access their daily health status. To live a

healthy lifestyle, it is critical to keep track of vital signs regularly and frequently.

Besides, the current COVID-19 pandemic has placed new demands on the health

monitoring system. Note that the non-critical patients are mostly referred to per-

form quarantine at home due to the limited capacity and resources of current

health care system, it is important to support the vital signs monitoring at home.

Traditional vital signs monitoring requires medical professionals using ded-

icated equipment, so it is usually performed in the hospital at a very limited fre-

quency. Thanks to the advancements in on-body sensors, people can monitor

their health status much easier using wearable devices. However, the sensor-

based methods require physical contact with human body, which is uncomfort-

able to use for a long period of time and may cause skin allergies. Moreover, these

devices suffer from high cost and inconvenience in sharing with other people.

Therefore, the technologies for non-intrusive vital signs monitoring have gained

more and more attention. As a less intrusive solution, vision-based methods uti-
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lize image sequences to detect the vital signs. However, the main drawbacks such

as its poor performance in low-light scenarios and the privacy concerns hinder

the wide deployment of the vision-based systems.

Thanks to the ubiquitous deployment of wireless radio devices and the de-

velopment of wireless sensing [13, 36, 73], Radio Frequency (RF) based methods

have become one of the most promising candidates. Intuitively, the presence of

a human subject will affect the RF propagation [84, 89, 90], i.e., RF signals re-

flected off human subjects will be modulated by the body movement including

chest movement due to respiration and heartbeat. As a result, RF-based systems

can estimate vital signs without any physical contact, while preserving the user

privacy and operating robustly regardless of the light conditions.

In the meanwhile, vital signs monitoring in driving environments is an-

other paramount application. As automobiles have become an essential part to

facilitate our daily life, Advanced Driver Assistance Systems (ADAS) have been

gaining more and more interest in assisting drivers to enhance both safety and

convenience. To respond timely in case of an emergency, ADAS needs to keep

track of the driver’s health/consciousness, which is generally achieved by moni-

toring driver’s vital signs including Respiration Rate (RR), Heart Rate (HR) and

Heart Rate Variability (HRV). The RF-based vital signs monitoring systems at-

tach great importance due to the superiority in handling environment change

(e.g., light and temperature condition) in driving scenario while providing a non-

intrusive solution to detect driver’s vital signs.

Motivated by the aforementioned problems in current indoor and in-car
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vital signs monitoring applications, in this dissertation, we illustrate how wire-

less sensing can be used to achieve high-accuracy vital sign monitoring for smart

home and smart car scenarios.

1.2 Related Works

The past few decades have witnessed a surging demand of vital signs mon-

itoring systems. Compared with the traditional method that requires users to

wear contact sensors, the contactless method can alleviate users’ burden and re-

duce the device cost. Existing approaches for contactless vital signs monitoring

can be classified into two categories: vision-based method and RF-based method.

Vision-based methods utilize the image sequences to monitor vital signs. In

principle, the breathing process causes involuntary quasi-periodic thoracic and

abdominal movements, which can be captured by video stream and thus utilized

for respiration rate estimation [67]. It has also been studied that the skin color

changes caused by blood perfusion can be used as a good feature to estimate

HR [32, 95] and HRV [38, 41, 43, 51, 62]. However, the main drawbacks such as

the sensitivity to the light conditions, the Line-of-Sight (LOS) requirement as well

as the privacy invasion hinder the wide deployment of the vision-based systems.

To this end, RF-based sensing has become one of the most promising candi-

dates due to the proliferation of wireless devices. Since the presence of a human

subject will affect propagation of electromagnetic (EM) wave [36, 89, 90], the RF

signals reflected off human body will be modulated by the body movement (e.g.,
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periodic chest movement caused by respiration and heartbeat). As a result, vi-

tal information of the human subject can be unveiled by analyzing the channel

propagation characteristics [13, 36, 73, 76]. This dissertation is widely related to

RF-based vital signs monitoring, and we will review the related works in the fol-

lowing subsections.

1.2.1 Respiration Rate Estimation

Respiration is an important vital indicator of health status and medical di-

agnosis. RF-based monitoring solutions can estimate breathing rates contact-

lessly since chest motions can be captured by RF signals. Due to the availabil-

ity of the Received Signal Strength (RSS) measurement on most WiFi devices,

UbiBreathe [3] is proposed to estimate respiration rate using RSS. However, since

RSS is not sensitive to the minute chest movements, the setting should be well

designed to get a good accuracy. Compared to RSS, Channel State Information

(CSI) is a fine-grained information that can portrait the EM wave propagation

and is more sensitive to the minute chest movement [11, 12, 82, 87, 88, 91]. How-

ever, due to the omni-directional propagation and the narrow bandwidth, it is

impossible to isolate each individual’s breathing signal. So most of the previous

works either study single person scenario [82, 87, 91] or assume the breathing

rates of each individuals are distinct [11, 12, 88].
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1.2.2 Heart Rate Estimation

Since the perturbation caused by the heartbeat (0.2 ∼ 0.5 mm) [57] is much

smaller than the wavelength of 2.4/5GHz WiFi system (60 ∼ 120 mm), the phase

change caused by the heartbeat is very small, resulting in a low SNR. Thus, most

of the conventional WiFi-based systems cannot estimate heart rates. To overcome

the coarse range as well as spatial resolution limitation in WiFi-based systems,

researchers try to build dedicated radar systems to remotely monitor vital signs.

Ultra-wideband (UWB) [29,58,66] and Doppler radar [21,22,31,37,44,47,50,54,

56,77] either directly measure the distance between chest and device or the rela-

tive speed change of chest movement to get the estimation of chest displacement

caused by vital signs. However, the assumption of a single user in these works

limits the further deployment of the system. Frequency-Modulated-Continuous-

Waves (FMCW) radar is built in [5] [45] to measure both the respiration rate (RR)

and heart rate (HR). Leveraging the fact that different users may locate in distinct

bins (a.k.a, range buckets), the vital signs of multiple people can be monitored

simultaneously. Finer spatial resolution is achieved in mmVital [85] by using a

pair of horn antennas, which investigates the feasibility of using 60GHz mmWave

signal to simultaneously monitor vital signs in a multi-user case. However, most

of these works [5, 21, 22, 29, 45, 58, 85] try to directly utilize frequency analysis

and Band-Pass Filter (BPF) to estimate the heart rate. As a result, these methods

are easy to fail when the subject’s heart rate is close to the respiration harmon-

ics. The polynomial fitting has been used [77] [44] [50] to remove respiration
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motion. However, the order of polynomial needs to be carefully selected by em-

pirical experience, and under-fitting or over-fitting can be easily triggered when

the experimental setting is changed (e.g., change of sampling rate or window

length).

1.2.3 Heart Rate Variability Estimation

Dedicated radars have been used to measure the distance change between

the chest and the device to estimate HR, as discussed in Section-1.2.2. However,

those systems mainly rely on the frequency-domain spectral analysis to estimate

the HR, which may take a couple of seconds, making it impossible to estimate

the precise timing of each heartbeat for calculating the HRV.

To achieve robust HRV estimation, a preliminary work [63] tries to elimi-

nate the respiration effect by asking users to hold their breaths. However, holding

breath will impact the performance of the HRV and thus the HRV metrics esti-

mated in this condition cannot indicate the users’ health condition accurately.

To extract the heartbeat wave, the 2nd-derivative of the distance change (i.e.,

acceleration) has been considered in [93], which is equivalent to a High-Pass Fil-

ter (HPF). However, the residual signal is too noisy for heartbeat extraction. To

identify the exact time of each heartbeat, it is assumed that the heartbeat sig-

nal is the successive multiple copies of a heartbeat template with different time

scales. However, as shown in [80], using a single template is insufficient. To get a

high detection accuracy, multiple templates are needed, and training is required
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before estimation. A simple approach based on two Band-Pass Filters (BPFs) is

employed for separating the respiration and the heartbeat signal in [24] [49],

however, since undesired peaks caused by the interference (e.g., harmonics of

respiration) may overlap with the dominant frequency band of the heartbeat,

dedicated systems need to be employed to remove the false peaks. Ensemble Em-

pirical Mode Decomposition (EEMD) is applied in [24] to remove the noise and

interference, however, the mode mixing problem as well as selecting the optimal

decomposed Intrinsic Mode Functions (IMFs) is not easy to solve in real appli-

cations. IBIs are assumed to not change much in [49], and the auto-correlation

is used to remove the false peaks. However, the system can only perform well

when the passing band does not overlap with the strong interference. To reduce

the interference, the Band-Pass Filter Bank (BPFB) is applied in [52], where the

HR is first estimated and the heartbeat signal is then filtered by using the BPF

with a center frequency at HR. However, a large error will occur once the HR is

not estimated correctly.

1.2.4 Handling Motion Artifacts

Preliminary works [5,11,45,49,50,52,75,76,79,85,93] have shown the fea-

sibility to monitor RR, HR and HRV using RF signals. However, these systems

can merely work in the ideal indoor scenario with the hypotheses of stationary

human subject, and cannot directly apply to driver vital sign monitoring scenario

due to the frequent driving motion. Note that even subtle displacement of body
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roaming could be larger than the displacement caused by respiration and heart-

beat. As a result, handling the motion artifacts is one of the biggest challenges to

achieve RF-based driver’s vital sign monitoring.

Multiple transceivers are deployed at opposite sides of human body to elim-

inate body movement [33] [70]. However, it significantly increases the system

complexity and deployment cost, and thus making it hard to implement in prac-

tice. The correlation of range taps between different time blocks is used in [65]

[30] to remove the body movement in the system with a single transceiver. How-

ever, this method can only remove specific body movement that is larger than

the range resolution, and the motion artifacts within the range resolution still

remains, thus reducing the estimation accuracy. To remove the motion artifacts

located in the same range tap, polynomial fitting is used in [86] to estimate the

displacement caused by body motion. However, the order of the polynomial fit-

ting needs to be carefully selected for different motion types, which is not robust

in practical use. Note that the above systems can only estimate HR, and the

residual signal after motion elimination is too noisy to extract the exact time of

heartbeats for further HRV estimation.

1.3 Dissertation Outline and Contributions

From the previous discussion, we can see that the wireless sensing is a

promising candidate for non-intrusive vital signs monitoring for both smart home

and smart car applications. However, there are many challenges to be solved to
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achieve accurate vital signs detection. In this dissertation, we focus on leveraging

the commercial wireless devices to accurately detect the vital signs using wireless

sensing techniques. The rest of this dissertation is organized as follows.

1.3.1 Respiration Tracking for People Counting (Chapter 3)

In this chapter, we propose a respiration tracking system using the Channel

State Information (CSI) of a single pair of commercial WiFi devices. The system is

capable of continuously tracking the breathing rates of multiple persons without

any prior knowledge of crowd number. Considering that the breathing signals

are typically fairly weak on a single sbucarrier, we make full use of the multiple

subcarriers and antenna links in Multiple-Input and Multiple-Output Orthog-

onal Frequency-Division Multiplexing (MIMO-OFDM) system and propose an

adaptive subcarrier combining method to boost the Signal-to-Noise-Ratio (SNR)

of breathing signals. To track the breathing rate traces from the spectrogram,

a Markov Chain Model is introduced to handle dynamics in natural breathing,

and we propose a successive cancellation scheme that resolves each individual’s

breathing trace one by one. Furthermore, by utilizing the breathing traces ob-

tained, the system can estimating the occupancy level in quasi-static scenarios.

We prototype and evaluate the proposed system on Commodity Off-The-Shelf

(COTS) WiFi devices. The results demonstrate promising performance.
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1.3.2 Multi-person Respiration Rate and Heart Rate Monitoring

(Chapter 4)

In this chapter, we propose ViMo, a calibration-free non-contact Vital sign

Monitoring system that can detect stationary/non-stationary users and estimate

the Respiration Rates (RRs) as well as Heart Rates (HRs) built upon a commer-

cial 60GHz WiFi. The system consists of two key components. First, we design

a calibration-free object detector that can identify static objects, stationary hu-

man subjects and human in motion. Second, to get robust HR estimation, we

eliminate the respiration signal from the phase of the Channel Impulse Response

(CIR) by smoothing spline algorithm. Dynamic Programming (DP) is applied to

further resist the random measurement noise. The influence of different settings,

including the distance between human and the device, user orientation and in-

cidental angle, blockage material, body movement and conditions of multi-user

separation are investigated by extensive experiments. Experimental results show

that ViMo monitors user’s vital signs accurately, with a median error of 0.19 Res-

piration Per Minute (RPM) and 0.92 Beat Per Minute (BPM).

1.3.3 mmHRV: Contactless Heart Rate Variability Monitoring (Chap-

ter 5)

In this chapter, we propose mmHRV [74], the first contact-free multi-user

Heart Rate Variability (HRV) monitoring system using commercial mmWave ra-

10



dio. Different from Chapter 4, in this chapter, finer information of heartbeat is

extracted. To get the exact time of heartbeats, we optimize the decomposition of

the phase of the channel information modulated by the chest movement. Exten-

sive experiments have been conducted to evaluate the performance. It has been

shown that the median error of Inter-Beat Intervals (IBI) is 28ms (w.r.t. 96.16%

accuracy). The performance of the multi-user scenario is slightly degraded com-

pared with the single-user case, however, the median error of the 3-user case is

within 52ms for all 3 tested locations.

1.3.4 Driver Vital Signs Monitoring (Chapter 6)

In this chapter, we propose a robust driver’s vital sign monitoring system

using commercial mmWave radio. To extract the reflection signals containing

vital signals, the motion artifacts are first removed by a novel motion compen-

sation module. The bins containing vital signals are then identified by check-

ing the periodicity of the phase measurement. The respiration and heartbeat

wave are further reconstructed by jointly optimizing the decomposition of all the

extracted compound vital signals. We evaluate the system performance in real

driving environment and investigate the impact of different parameters includ-

ing the device locations, pavement conditions and motion types. Experimental

results show that the proposed system can achieve a median error of 0.16 RPM,

0.82 BPM and 46 ms for RR, HR and IBI estimations, corresponding to the rela-

tive accuracy of 99.17%, 98.94% and 94.11%, respectively.
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Chapter 2: Primer of Wireless Sensing

Wireless channel information plays an important role in wireless sensing.

Since the presence of human subject affects the wireless signal propagation, the

information corresponding to the human subject is embedded in the channel in-

formation. In this chapter, we give a detailed introduction to the wireless channel

model and illustrate why channel information can depict the vital motions for

wireless vital signs monitoring. The rest of this chapter is organized as follows.

The Channel State Information (CSI) of 2.4/5GHz WiFi is introduced in Section

2.1. We further introduce the Channel Impulse Response (CIR) of 60GHz WiFi

and Frequency-Modulated-Continuous-Wave (FMCW) radar in Section 2.2 and

Section 2.3 respectively.

2.1 Wireless Channel Model for 2.4/5GHz WiFi

Given a typical transmission pair of WiFi devices equipped with omnidirec-

tional antennas, the transmitted signal encounters different scatters in the envi-

ronment and thus reaches the receiving antenna through different paths. There-

fore, the received signal is a superposition of multiple scaled and delayed replicas

of the transmitted signal. The Channel State Information (CSI) is the frequency
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response of the channel, which can be modeled as

h(t, fk) =
L∑
l=1

al(t)exp(−j2πfkτl(t)), (2.1)

where k ∈ V is the subcarrier (SC) index with center frequency fk in the set of

usable SCs V . L is the total number of multipath components (MPCs), while al(t)

denotes the complex gain of MPC l. The propagation delay τl(t) is a function of

the propagation distance: τl(t) = dl(t)
c , where c is the speed of light.

In the presence of human beings, one or more paths of signal progation will

be altered due to the human motion. In the presence of breathing, (2.1) can be

rewritten as

h(t, fk) =
∑
i∈I

∑
l∈Ωdi

al(t)exp(−j2πfk
dl(t)
c

) +
∑
l∈Ωs

al exp(−j2πfk
dl
c

), (2.2)

where I denotes the set of human subjects. Ωdi denotes the MPCs scattered by

human being i, resulting in time-variant complex gain and delay. Ωs denotes

the MPCs that are not affected by people’s breathing, whose complex gain and

delay keep time-invariant. It is noted that for each MPC subset Ωdi , the delay is

periodic due to the periodic chest movement, i.e., dl(t+Tbi ) = dl(t),∀l ∈Ωdi , where

Tbi is the breathing cycle of i-th human subject. Hence we would be able to see

multiple frequency components of the measured CSI, each corresponding to a

distinct breathing signal. The respiration rate traces corresponding to different

human subjects are estimated from the measured CSI time series in Chapter 3.
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2.2 Wireless Channel Model for 60GHz WiFi

60GHz WiFi is becoming a mainstream in wireless devices to enable high

rate networking with the development of 802.11ad/ay standards (a.k.a. WiGig).

60GHz WiFi offers high directionality with large phased arrays in small size

thanks to millimeter-wavelength and precise time-of-flight measurements brought

by the large bandwidth. In the following, we will discuss the impact of vital sig-

nals on the Channel Impulse Response (CIR) of the Qualcomm’s 60GHz WiFi.

Assume the travelling distance of the electromagnetic (EM) wave reflected

by human chest is d(t), then the CIR between Tx antenna m and Rx antenna n

can be expressed as

hm,n(t) = am,n(t)exp(−j2π
dm,n(t)
λc

), (2.3)

where am,n(t) is the complex channel gain, λc denotes the wavelength of the car-

rier. Due to the modulation of the vital signs, i.e., respiration and heartbeat,

dm,n(t) appears to be a combination of two periodic signals, which can be further

expressed as

dm,n(t) = d0(m,n) + sr(t) + sh(t), (2.4)

where sr(t) and sh(t) denote the distance change due to respiration and heartbeat,

and d0(m,n) denotes the constant travelling distance. Considering the fast-time

resolution of the device, the reflected signal will fall into the l-th tap if d0(m,n) =

lTsc +∆d(m,n), where Ts = 1/B denotes the fast-time resolution and B stands for

the system bandwidth. ∆d(m,n) denotes the distance residual, where ∆d(m,n) =
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Figure 2.1: Coordinate system and typical signal containing vital sign.

d0(m,n)− lTsc < Tsc.

If the reflected signal falls into the l-th tap of the measured CIR with resid-

ual ∆d(m,n), the CIR at tap l, denoting as hl(t) = [h1,1(t),h1,2(t), . . . ,hM,N (t)]T , can

be expressed as

hl(t) = a(t)� exp(−j2π∆d+ sr(t) + sh(t)
λc

)

= ãexp(−j2πsr(t) + sh(t)
λc

),

(2.5)

where ∆d = [∆d(1,1),∆d(1,2), . . . ,∆d(M,N )]T , a(t) = [a1,1(t), a1,2(t), . . . , aM,N (t)]T ,

and � denotes elementwise product. We assume a(t) is time-invariant due to the

tiny movement of the subject, and the common phase shift is absorbed in the term

ã. It is apparent that the phase of the CIR measurement changes periodically in

slow time due to the periodic motions of respiration and heartbeat, as shown in

(2.5). Fig. 2.1 (b) shows a typical phase signal containing vital signs.

To further get the CIR at a specific angle, beamforming can be performed at

both Tx and Rx. Here we take the conventional beamforming as an example. In

specific, at Tx side, to create a beam toward to angle (θ,φ), the coefficient of the
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m-th antenna of steering vector sTx is

sTx,m(θ,φ) = exp(−j2π
dm,x cosθ sinφ+ dm,y cosθ cosφ

λc
). (2.6)

dm,x and dm,y are the horizontal and vertical distance between antenna m and the

origin, as shown in Fig. 2.1 (a). Similarly, at Rx side, to detect the Angle of Arrival

(AoA) of the signal, the coefficient of the n-th antenna of steering vector sRx is

sRx,n(θ,φ) = exp(−j2π
dn,x cosθ sinφ+ dn,y cosθ cosφ

λc
). (2.7)

dn,x and dn,y are the horizontal and vertical distance between antenna n and the

origin. The CIR after performing beamforming can be expressed as

hθ,φ,l(t) = sH (θ,φ)hl(t) + ε(t), (2.8)

where ε(t) stands for additive white Gaussian noise which is independent and

identically distributed (I.I.D) for different links. sH (θ,φ) is the steering vector

pointing to the direction (θ,φ) , which can be expressed as the Kronecker product

between sRx and sTx, i.e.,

s(θ,φ) = sTx(θ,φ)⊗ sRx(θ,φ). (2.9)

The Qualcomm’s 60GHz WiFi enables on-chip beamforming at both Tx and

Rx. The frame structure is shown in Fig. 2.2 (a). In each burst, Tx will send a se-

ries of known pulses toward to different sectors (θ,φ), and Rx will also perform

beamforming with corresponding steering vector towards to angle (θ,φ). There-

fore, the space can be separated as cells, as shown in Fig. 2.2 (b) , where ∆r = c
2B

is the range resolution of the device, and l is the range tap index. ∆θ and ∆φ
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(a) Example of the frame structure (b) Example of the cell

Figure 2.2: Example of the frame structure and the cell.

denote the elevation and azimuth separation respectively. Thus, in each burst,

we will get channel information of all cells.

2.3 Wireless Channel Model for FMCW radar

With the development of the integrated circuit, it is possible to integrate

a complete radar system on a single chipset. The dramatic decrease of the de-

vice cost makes radar systems become popular for industrial applications, where

Frequency-Modulated-Continuous-Wave (FMCW) radar is widely adopted due

to its accurate and stable measurement.

During the measurement, a chirp signal is transmitted by the FMCW radar,

where the instantaneous transmitting frequency is a periodic linearly-increasing

signal as shown in Fig. 2.3, and it can be expressed as [45]

ft = fc +
B
Tc
t, (2.10)

where fc is the chirp starting frequency, Tc is the chirp duration and B is the
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bandwidth. According to Frequency Modulation (FM), the transmitted signal

xT (t) can be expressed as

xT (t) = AT exp{−j[2π
∫ t

0
ft(τ)dτ]}

= AT exp{−j[2πfct +π
B
Tc
t2]},

(2.11)

where AT is the transmitting power. When the EM wave is reflected by human

chest at distance d(t), the reflected signal xR(t) can be expressed as

xR(t) = AR exp{−j[2πfc(t − td) +π
B
Tc

(t − td)2]}, (2.12)

where AR is the amplitude of the receiving signal. td stands for the round-trip

delay and can be denoted as td = 2d(t)
c , where c is the speed of light.

Mixing the received signal with a replica of the transmitted signal and fol-

lowing a low-pass filter, the channel information h(t) can be expressed as

h(t) = Aexp {−j(2πBtd
Tc
t + 2πfctd −π

B
Tc
t2d)}. (2.13)

Note that the term π B
Tc
t2d is negligible, especially in short-range scenarios. There-
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fore, the h(t) can be written as

h(t) = Aexp {−j(2πBtd
Tc
t + 2πfctd)}, (2.14)

which is a sinusoidal signal whose frequency fb , Btd
Tc

= 2Bd(t)
cTc

depends on the

target’s distance. For each chirp, the baseband signal h(t) is digitized by Analog-

to-Digital Converter (ADC), producing N samples per chip, referred to as fast

time. The time corresponding to the transmission of chirps is referred to as slow

time, as shown in Fig. 2.3. Therefore, the digitized channel information for the

nth ADC sample and mth chirp can be expressed as

h(n,m) = Aexp {−j(2πfbnTf +
4πd(mTs)

λc
)}, (2.15)

where Tf and Ts are the time interval in fast time and slow time respectively. λc

denotes the wavelength of the chirp. Therefore, when the signal is reflected by

the human chest, the periodic change corresponding to respiration and heartbeat

can be observed in the phase of the channel information, as shown in (2.15).
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Chapter 3: Respiration Tracking for People Counting

3.1 Introduction

Human-centric sensing via wireless Radio Frequency (RF) has attracted an

increasing interest for a range of Internet of Things (IoT) applications [73] [36].

Demands of accurate and passive awareness of the environment surge for many

applications [13] [27]. For instance, a smart home can adjust the light and ven-

tilation system based on occupancy level to improve energy efficiency [15] [14].

People recognition in smart homes enables user authentication for home security

and privacy protection [7,78,83,92,96]. Besides understanding the environment,

monitoring the status of human in the environment also has received great atten-

tion, and respiration/breathing rate, serving as a significant vital sign, has been

an important topic for RF sensing.

Comparing with conventional methods that use dedicated sensors to mon-

itor breathing rates, RF sensing provides contact-free solutions. Thanks to the

easy-deployment property, WiFi-based methods have been studied in the past

decade [3, 11, 12, 35, 88, 91]. Received Signal Strength (RSS) measured by a WiFi

device has been used in [3] to measure the chest movement during breathing.

However, the accuracy of respiration rate estimation degrades when the test sub-
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jects do not hold the device. Fine-grained Channel State Information (CSI) is

more sensitive to the environment changes, which has been utilized to capture

minute movements caused by respiration in [11, 12, 35, 88, 91]. However, due

to the omni-directional propagation and narrow bandwidth of commonly used

2.4/5GHz WiFi, the received signal can be reflected from multiple humans in an

indoor space. This makes it difficult to extract the vital signs of multiple humans

from the reflected signal. Most of the previous works assume that there is only

one person in the observation area [91] or assume the respiration rates of different

people are distinct and the number of people is known in advance [11,12,35,88].

In this chapter, we propose a solution to continuously track human respira-

tion rate without any prior knowledge of the crowd number or assuming that the

breathing rates of different users are distinct. Different from the previous works,

we are particularly interested in matching the breathing rates estimated in dif-

ferent time instances to different users, i.e., which breathing rate corresponds to

which person. By utilizing the estimated breathing rate traces, our system can

achieve people counting at the same time. The rest of this chapter is organized

as follows. The system is overviewed in Section 3.2, followed by multi-person

breathing spectrum generation in Section 3.3 and breathing rates tracking in

Section 3.4. The case of people counting is studied in Section 3.5 and the per-

formance is evaluated in Section 3.6. Finally, conclusions are drawn in Section

3.7.

21



3.2 System Overview

The computational pipeline underlying the proposed system is shown in

Fig. 3.1. Different from many previous works aiming at estimating independent

breathing rates at certain time instances, this work focuses on utilizing the fre-

quency as well as time domain information to do identity matching. The core

idea is to estimate the breathing rate sequences along the time (a.k.a, breathing

rate traces) of different individuals. Furthermore, utilizing the estimated breath-

ing rate traces, we can estimate the occupancy level in the observation area. This

idea immediately leads to three stages of the proposed system: (1) Multi-user

breathing spectrum generation, (2) breathing rate trace tracking, and (3) peo-

ple counting.

In the first stage, the proposed system first performs Short-Term Fourier

Transform (STFT) on CSI measurements to extract the periodic breathing signals.

As long as the breathing rates of different individuals are different, multiple fre-

quency components would be observed in the frequency response. The extracted

breathing signals are typically fairly weak on a single subcarrier, which are fur-

ther boosted by a novel adaptive subcarrier combining method. Stage 1 finally

outputs a spectrogram of the estimated breathing rates over time.

In Stage 2, the goal is to track the breathing rate traces (i.e., breathing

sources) from the spectragram obtained from Stage 1. However, there is a sig-

nificant gap between breathing rates to breathing rate traces because of two rea-

sons: First, different individuals may have the same breathing rates that overlap
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with each other. Second, one’s breathing rate varies over time. To address the

challenges, a Markov Chain Model is introduced to handle dynamics in natural

breathing. We propose a successive cancellation scheme that resolves each in-

dividual’s breathing trace one by one by a novel algorithm of iterative dynamic

programming. Thereafter, we concatenate the identified traces of breathing rates

in adjacent time windows to further identify the arriving and leaving time of

human subjects.

In Stage 3, we leverage the estimated breathing rate traces given by Stage

2 to do people counting and recognition. By further utilizing the time-domain

information and removing outliers of the estimated breathing rate traces by a

novel quasi-bilateral filter, the system gives an estimate of the crowd number.
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3.3 Multi-user Breathing Spectrum Generation

The breathing signals can be extracted by applying Short-Term Fourier Trans-

form (STFT) to the CSI measurement. In specific, we first apply a sliding window

of lengthW to the captured CSI time series of each SC in every link, and then ob-

tain the frequency spectrum by performing Fast Fourier Transform (FFT) over each

time window. We then employ a band-pass filter on the spectrum to consider only

the normal range of human breathing frequencies [bmin,bmax]. The FFT is per-

formed on every SC to obtain the individual spectrum for all the NTx ×NRx ×Nsc

SCs, where NTx,NRx, and Nsc are the number of Tx antennas, Rx antennas, and

usable SCs on each Tx-Rx link, respectively.

As shown in Fig.3.2, each breathing signal from one person contributes to

one evident peak in the obtained Power Spectrum Density (PSD). Note that dif-

ferent SCs experience diverse sensitivity levels to the identical breathing motion.

Previous approaches attempt to select a set of best SCs based on variance, am-

plitude or ensemble average of CSI among all SCs to improve SNR. However,

the following observations show the flaws of these approaches: 1) The response

power of different SCs to the same breathing source is different (See columns in

Fig. 3.2). 2) For the same SC, the response power to different breathing sources is

different (See rows in Fig. 3.2). 3) The response power of different links is distinct

(Different figures in Fig. 3.2). Therefore, there is no single SC that is universally

sensitive to all breathing sources. Using the same subset of SCs for different fre-

quency components may not produce equally good SNR for all breathing signals.
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Figure 3.2: PSD of different links. Ground-truth: 3 people sitting in car with

breathing rate [10 14 15] Respiration Per Minute (RPM) (marked as dashed lines).

Furthermore, using a universal threshold for all links may lose information from

links with low response power.

Inspired by these observations, we first propose a novel adaptive SC com-

bining criteria to boost the SNR of breathing signal of each link. For link m, the

selected SCs for a given frequency component q satisfy the condition that

E
(m)
k (q) ≥ α max

q∈Q,i∈V
{E(m)(q, i)},∀k ∈ V , (3.1)

where Q is the set of frequency components in the range of [bmin,bmax]. E(m)
k (q)

denotes the power of the k-th SC over link m at frequency component q and

maxq∈Q,i∈V {E(m)(q, i)} denotes the maximum power of link m over all frequency

components and SCs. α is a hyper-parameter which determines a relative thresh-

old th(m) = αmaxq∈Q,i∈V {E(m)(q, i)} for SC selection. Note that th(m) is adaptive
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Figure 3.3: Normalized PSD of different links after SC combination.

to individual link quality, as inspired by the third observation above. Thus, the

enhanced power of frequency component q in link m is

E(m)(q)←
∑
k∈V

E
(m)
k (q)1(E(m)

k (q) ≥ th(m)). (3.2)

To further incorporate diverse link quality, we normalize the power for each

link and then combine them together to further improve the SNR:

E(m)(q)←
E(m)(q)∑
i∈QE

(m)(i)
,∀q ∈Q, (3.3)

E(q)←
M∑
m=1

E(m)(q),∀q ∈Q, (3.4)

where E(q) is the power of frequency component q after link combination and

M =NTx ×NRx is the total number of links.

Fig. 3.3 shows the effect of SC combination for several exemplary links. As

seen, the proposed SC selection and combination scheme (shown in blue curves)
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remarkably improves the SNR for the frequency components of interests, outper-

forming the simple average scheme (shown in red curves). Fig. 3.4 further depicts

the PSD after the combination of all 9 links, which demonstrates that noise and

interference have been effectively suppressed. The ground-truth of breathing

rates are marked with the black dashed lines. As a comparison, simple average

of all SCs suffer from less dominant peaks for the desired breathing signals and

false peaks.

3.4 Breathing Rate Trace Tracking

3.4.1 From Breathing Rates to Breathing Rate Traces

Previous works estimate the number of people by the number of candidate

breathing rates [11]. However, they have several limitations. First, the breathing

rate estimation may not be accurate enough for a single time instance. Second,

different users may have close breathing rates that are indistinguishable from the
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frequency spectrum, resulting in potential underestimation. Third, the number

of people could vary over time as people may come and go. And the accompany-

ing motion will also corrupt the breathing signals.

To map the breathing rates to individuals and thus further estimate the ac-

curate crowd number, we utilize the diversity in the time series of breathing rate

estimates for reliable estimation. We first model the dynamic breathing rates as a

Markov process. Noting that the breathing signals are periodic where breathing

frequency can smoothly change over time, the variation of breathing rate between

two adjacent time bins is assumed to follow a normal distributionN (0,σ2), with

the Probability Density Function (PDF) p(f ). Since the operation of STFT au-

tomatically discretizes the continuous frequency in the range of [bmin,bmax] into

|Q| frequency components, where |Q| means the cardinality of set Q, the natural

breath can be modeled as a Markov chain, and the transition probability matrix

is denoted as P ∈ R|Q| ×R|Q|, which is defined as

P(q,q
′
) = P(g(i) = q

′
|g(i − 1) = q)

=
∫ (q

′−q+ 1
2 )∗∆f

(q′−q− 1
2 )∗∆f

p(f )df ,
(3.5)

where ∀q,q′ ∈ Q and g is a mapping indicating the frequency component of the

breathing rate at given time slots.

To estimate the breathing rate trace in a given time slot t, our system lever-

ages the spectrum in [t −W,t], where W is the window length. An output is

produced every Ws seconds, and the spectrum is updated at the same time. Thus

to estimate the breathing traces at time t, a spectrum S ∈ RI+ × R|Q|+ is leveraged,
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Figure 3.5: Spectrogram after link combination.

where I = W
Ws

.

In principle, the breathing signal is more periodic than noise and other mo-

tion interference. Thus, it is more likely to be observed as peaks in most of the

time, and thus the breathing signal will form a trace in the given spectrum along

the time with the frequency changing slightly, as shown in Fig. 3.5. In the follow-

ing, we first extract the traces of successive breathing rates in the given window,

and then concatenate them over time.

3.4.2 Extracting Breathing Rate Traces

3.4.2.1 Theoretical Model

For a given spectrum S, a reasonable estimate of the breathing trace can be

obtained by

g∗ = argmax
g

E(g), (3.6)

where g indicates the breathing trace, denoted as

g = (g(n),n)In=1. (3.7)
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Here, g : [1, I] −→Q is a mapping indicating the frequency component of the trace

at the given time. E(g) is the power of a trace, defined as

E(g) =
I∑
i=i

S(i,g(i)), (3.8)

where S(i, j) denotes the power at time bin i and frequency component j.

Considering that one’s breathing rate will not fluctuate a lot within a short

period, a regularization term is added to penalize sudden changes in frequencies

of interests. A breathing trace is then a series of breathing rate estimates that

achieve a good balance between frequency power and temporal smoothness. The

smoothness of a trace can be evaluated by a cost function C(g), defined as

C(g) , − logP(g(1))−
I∑
i=2

logP(g(i − 1), g(i)), (3.9)

where the frequency transition probability P(g(i − 1), g(i)) can be calculated by

(3.5). Without loss of generality, we assume a uniform prior distribution, i.e.,

P(g(1)) = 1
|Q| . The cost function C(g) is the negative of the log-likelihood for a

given trace. The smoother a trace is, the larger its probability is, and the smaller

the cost it incurs.

The most probable breathing trace can be found by solving

g∗ = argmax
g

E(g)−λC(g), (3.10)

where λ is a regularization factor. Here we denote E(g) − λC(g) as the regular-

ized energy of trace g. By properly choosing the hyper-parameter λ, the system

can ensure that the regularized energy of a true breathing trace is positive, while
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when the observation area is empty, the regularized energy for any trace candi-

date in the given spectrum is negative.

3.4.2.2 Iterative Dynamic Programming

The problem in (3.10) can be solved by dynamic programming. However,

dynamic programming typically can only find the trace with the maximum reg-

ularized energy and cannot deal with multiple breathing traces. We propose a

successive cancellation scheme to find multiple traces one by one via a novel

method of iterative dynamic programming (IDP).

The principle idea of the IDP is intuitive. For a given spectrum S, the most

probable breathing trace is first found by dynamic programming. To further de-

termine if there are any other breathing traces, the identified trace will be erased

from the spectrum, and then a new round of dynamic programming is performed

to find another candidate trace. This successive cancellation procedure will be

run iteratively until there is no more effective traces in the spectrum.

For clarity, (i,q) denotes the bin index with timestamp i and frequency com-

ponent q. We want to find the best trace of frequency peaks from timestamp i

to j, which is denoted as gi { gj . Define the regularized energy of trace gi { gj

that ends at point (j,n) as s(gi { (j,n)). Our approach is to search all possible

traces gi { (j,n) that end at frequency point n and select the best one among

them. This can be achieved by finding the optimal traces for all the bins along

with the adjacent timestamps. For simplicity, we denote the regularized energy
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at each bin as its score given by

s(i,q) = S(i,q) + max
∀q′∈Q

{s(i − 1,q
′
) +λ logP(q

′
,q)},

i = 2,3.., I , ∀ q,q
′
∈Q,

(3.11)

where s(1,q) = S(1,q) +λ logP(g(1) = q). The score of a given bin is the maximum

achievable regularized energy that it can obtain. In other words, it determines

the optimal paths that pass through bin (i,q).

Algorithm 1 Iterative Dynamic Programming
1: Calculate regularized energy map s(i, j) by (3.11)

2: Initialize trace number t← 0, frequency response of rectangular window w

3: while max
q
s(I,q) > 0 do

4: t← t + 1

5: gt(I)← argmax
q

g(I,q)

6: i← I − 1

7: while i , 0 do

8: g∗t (i)← argmax
q

s(i,q) +λ P(q,g∗t (i + 1))

9: i← i − 1

10: end while

11: update spectrum S(i) = S(i)− S(i,g∗(i)) ∗w,∀i = 1,2, ...I

12: Calculate regularized energy map s(i, j) by (3.11)

13: end while

The entire optimal breathing trace can be found by backtracking the bins

that contribute to the maximum score g∗(I) of the last timestamp. For the rest of
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the breathing trace in the observation window, i.e., ∀ i = I − 1, I − 2, ...,1, we have

g∗(i) = argmax
∀q∈Q

s(i,q) +λ logP(q,g∗(i + 1)). (3.12)

The backtracking procedure in (3.12) gives the optimal trace g∗ for a given spec-

trum, which is the optimal solution for (3.10).

To further check if there are any other candidate breathing signals in the

given spectrum, the trace g∗ should be removed. For the ideal case, we only need

to remove the bins along g∗. However, since the number of FFT points are limited,

the energy of the breathing signal is diffused around the center of breathing trace,

which forms an energy strip in the given spectrum as shown in Fig. 3.5. Thus, if

we only remove the energy along the optimal trace g∗ and consecutively execute

dynamic programming in (3.11) and (3.12), we will get a group of traces inside

one energy stripe. Therefore, IDP applies a windowing module on the optimal

trace g∗ to emulate the diffusing effect of FFT to get an energy stripe. The updated

spectrum after we erase the optimal energy stripe is

S(i)← S(i)− S(i,g∗(i)) ∗w,∀i = 1,2, ...I , (3.13)

where S(i) denotes the energy of spectrum at timestamp i, and w is the frequency

response of the windowing module. Operator ∗ denotes convolution operation,

which can emulate the energy stripe caused by the diffusing effect of FFT.

We recursively perform the above dynamic programming and spectrum

cancellation to find multiple traces. The algorithm terminates when the score

of the found trace is negative, indicating an empty spectrum without any effec-

tive traces.
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Figure 3.6: Successive cancellation procedure of IDP.

The procedure of iterative dynamic programming is summarized in Algo-

rithm 1. Fig. 3.6 illustrates the details of this finding-then-erasing procedure. In

Fig. 3.6 (a), the trace found by DP is marked by the line, and the energy stripe

of this trace is removed as shown in Fig. 3.6 (b). The spectrogram, when IDP

terminates, is shown in Fig. 3.6 (c), and lines in the figure indicate the breathing

traces. It is clear to see that although there is still some residual energy not per-

fectly removed, IDP terminates properly since there are no traces satisfying the

constraint of non-negative regularized energy.

3.4.2.3 Detecting Empty Case

Ideally, when there is no person present in the monitoring area, no breath-

ing trace would be picked up since the spectrum would be random due to the

normal distribution of the thermal noise. In reality, however, false traces could

be detected since some noise might be boosted in the empty case. To avoid this

effect, we employ motion detection to determine empty cases. If no motion (not

even chest movement) is detected, the system will directly claim empty; other-

wise, the above steps are performed to find a potential breathing rate trace. Here
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the motion detector needs to be sensitive and robust enough to detect breathing

motion. In this paper, we employ the state-of-the-art approach proposed in [90]

for this purpose, which achieves almost zero false alarm.

3.4.3 Trace Concatenating

Iterative dynamic programming provides the breathing rate traces for each

time window. In practice, a continuous monitoring system, however, would op-

erate for much longer time than a time window, posing extra information gains

to enhance the trace extraction. In this part, we propose a novel trace concate-

nating algorithm to concatenate trace segments belonging to the same breathing

signal in different time windows, which not only improves the trace segments,

but also enables detection of the start and end time of each trace (or equivalently,

the entering and leaving time of a specific user).

For clarity, we store all presented traces in a database. The jth trace found

previously is denoted as gpre
j (tst : tend), where j = 1, · · · , J and tst and tend denote

the start and end time of the trace. The kth traces found in the current time

window [t −W,t] is denoted as gk(t −W : t), where k = 1, · · · ,K . Furthermore, the

similarity between two traces is defined as the ratio between the overlapped time

in the window and the window length, which is expressed as

f (gpre
j ,gk) =

|1(gpre
j (tst : tend) = gk(t −W : t))|

I − 1
, (3.14)

where f (gpre
j ,gk) ∈ [0,1]. A similarity matrix F ∈ RJ ×RK can be calculated accord-
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Figure 3.7: Traces found by IDP in four adjacent time windows.

ing to (3.14) to show the similarity between all the traces in the current window

and those in the database. In order to find the previous part for gk(t −W : t),

we only need to find the maximum item of f(k), which is the k-th column of

F. The row index of the maximum similarity indicates the index of the previ-

ous trace if the maximum similarity is above a predefined threshold. If there

exists a previous trace with a high enough similarity, it means that the corre-

sponding breathing rate trace has been detected before. Then the endpoint of the

corresponding trace should be updated. We let the endpoint be the current time

and update the corresponding frequency component accordingly. In case a new

user arrives, there will be no existing traces that have a similarity larger than the

threshold and thus a new trace is created with the corresponding timestamps and

frequency components. Similarly, no trace in the current window being similar

to the past traces corresponds to a user that has left, and thus the trace would be

terminated.

Fig. 3.7 and Fig. 3.8 show the effect of trace concatenating algorithm. Four

adjacent time windows are shown in Fig. 3.7, and traces found by IDP are marked

by lines. We can see that although the breathing trace in the middle of the spec-
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Figure 3.8: Trace concatenating result of windows in Fig. 3.7.

trogram is not detected in the second and third window (due to body motion as

well as breathing rate change of the subject), since the trace found in the fourth

window still achieves high similarity with the trace found in the first window, it

still can be concatenated as shown in Fig. 3.8.

3.5 People Counting

IDP and trace concatenation provides the estimation of breathing rate traces,

and the trace number would be the estimate of occupancy level. Although the

IDP and trace concatenating have considered the stability of human breath in

the observation area, the estimation result may still suffer from large noise and

have some false alarms or underestimations for a real-time output as shown in

Fig. 3.7 (b) (c). To eliminate/mitigate these outliers for a real-time system, we

design a quasi-bilateral filter to explore the information contained in the previ-

ous estimations. Similar to the bilateral filter [71], the designed filter considers

the distance in time and estimation domain simultaneously, but we make some

improvements according to our system. First, for a real-time system, the filter
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can only use the past and current estimation result. Furthermore, since IDP and

trace concatenation leverage time as well as frequency information to get contin-

uous breathing rate traces, the preliminary estimations are consistent in a short

period. Thus, if we directly use a bilateral filter, only the first incorrect output

will be rectified. Given these two constraints, we develop a segment-based filter,

where each segment is a consistent preliminary estimation sequence.

Specifically, the output is determined by the current estimation and the

previous segments. We denote the weight of segment s as Wseg(s) expressed as

Wseg(s) = w(ls) ∗w(τs) ∗w(ds), (3.15)

where ls is the length of segment s, and τs is the time difference between segment

s and current timestamp. ds is the estimation difference between current esti-

mation and segment s as shown in Fig. 3.9. Intuitively, the longer the segment

is, the greater weight will be assigned. In contrary, the larger the distance is, no

matter in time or the estimate of the crowd number, the smaller the influence of

this segment imposing on the current result. For clarity, the set of segments with

i estimated people is denoted as Si , and the current estimated number as j. The

weight that the currently estimated people is i after quasi-bilateral filter can be

calculated by

p(i)← 1
N

(
∑
s∈Si

ls
τs

)e−ds , (3.16)

where N is the total number of segments, the estimation difference is ds = |i − j |,

and Wseg(s) in (3.15) is designed as

Wseg(s)← ls
τs
e−ds . (3.17)
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Figure 3.9: Example and illustration of quasi-bilateral filter.

The eventual result after filtering is j
′
, given by

j
′
= argmax

i
p(i). (3.18)

Fig. 3.9 shows the estimation results before and after quasi-bilateral filter-

ing. Clearly, the novel quasi-bilateral filter can remove the estimation outliers

effectively, and thus improve the performance of people counting system.

3.6 Experiments and Evaluation

In this section, we conduct extensive experiments to evaluate the perfor-

mance of the proposed approach. Specifically, we first introduce the experimen-

tal setup and then the results corresponding to two different scenarios. Discus-

sion on the impact of distinct modules proposed in Section 3.4 follows.
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3.6.1 Device and Methodology

We conduct experiments using a pair of commodity WiFi devices, one as

Tx and the other as Rx. The channel is set to 5.765 GHz with a bandwidth of 40

MHz. Both Tx and Rx are equipped with 3 omnidirectional antennas. Each link

between a Tx antenna and an Rx antenna has a total of 114 SCs. Considering for

practical long-term monitoring, we use a very low sampling rate of 10 Hz.

All the data in our experiments are collected in an on-campus lab and a

car over two months with 12 participants. Fig. 3.10 (a) shows the layout of the

LAB in which two devices (Tx and Rx) are put on two different sides of a round

desk, and the distance between the Tx and Rx is 3.5 m. Participants are invited

to sit in chairs as if they were attending a meeting. During the experiments, the

participants randomly choose their seats and slight movements are allowed. To

further verify that the proposed system is independent of the environment, we

also conduct experiments in a car, which is an extreme case for indoor scenario,

where there is limited space as well as strong reflection. For the car scenario, the

Tx and Rx are put at the front door on the driver and passenger side respectively,

as shown in Fig. 3.10 (b).
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Figure 3.10: Experiment setup.

3.6.2 Overall Performance

Fig. 3.11 (a) shows the confusion matrix of our method in the LAB, and the

overall accuracy is 87.14%, with the accuracy defined as

Accuracy =
# of predicted label equals true label

total # of samples
. (3.19)

The counting error is within 1 person for 98.6% of the testing cases. Addition-

ally, the proposed system can perfectly detect whether the monitoring area is oc-

cupied or not. The accuracy however, decreases with more people present. This

is as expected since the more people there are, the more likely their breathing

traces may merge together and the more likely occasional motion may happen,

both leading to counting errors. Fig. 3.12 (a) shows that our testing result in the

car can achieve a comparable performance with that in the LAB, which demon-

strates the independence of our system on the environment.

To further evaluate our system, we compare it with the most relevant TR-

BREATH [11] which also estimates multi-person breathing rates using commer-
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(b) TR-BREATH system
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(c) Without quasi-bilateral filter

Figure 3.11: Confusion matrix of people counting in LAB.

cial WiFi. TR-BREATH employs root-MUSIC for breathing rate estimation and

uses the affinity propagation algorithm to estimate crowd number. In order to

make fair comparison, quasi-bilateral filter is used to filter out the outliers of

original TR-BREATH estimations. The estimation accuracy of TR-BREATH [11]

in LAB and car are shown in Fig. 3.11 (b) and Fig. 3.12 (b) respectively. As seen,

TR-BREATH shows a comparable performance in the car testing scenarios. The

performance in the LAB environments is much worse, with an overall accuracy

of 70.68%. The proposed approach improves the overall performance by 16.46%

and 3.32% for LAB and car testing scenario respectively, attributed to its three

core techniques: adaptive SC combination, iterative dynamic programming, and

trace concatenation.

3.6.3 Performance Gain of Individual Modules

In this section, we discuss how each independent module improves the per-

formance of our system. Apart from the confusion matrix and accuracy, here we
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(b) TR-BREATH system
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(c) Without quasi-bilateral filter

Figure 3.12: Confusion matrix of people counting in car.
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Figure 3.13: TP comparison of different algorithms.

additionally adopt true positive (TP) rate, which is calculated as:

TPi =
# of samples that predicted label is i
total # of samples that true label is i

. (3.20)

3.6.3.1 Impact of SNR Boosting Algorithm

Here, we compare the proposed SNR boosting algorithm with the com-

monly used one, i.e., selecting the SCs whose maximum energy are above a cer-
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Figure 3.14: Accuracy of different algorithms.

tain threshold (hereafter, it is called fixed threshold algorithm). For fair compar-

ison, we choose the 30% of the maximum link energy as the threshold for both

of the methods. Furthermore, the energy of each link is normalized before link

combination, thus the parameters used in later process for both methods are also

the same. Fig. 3.13 compares the TP of the two SC selection algorithms. It can be

easily seen that our proposed algorithm shows better performance. This is bene-

fited from our observation that SC has different sensitivity on distinct breathing

signals, i.e., for each SC, we only choose the part that is most likely to be a signal,

thus compressing noise and interference well. Fig. 3.14 also shows the superior-

ity of our method in the accuracy aspect. Besides, the fixed threshold algorithm

degrades significantly when there are more than 3 people because they cannot

effectively suppress noise and interference.
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3.6.3.2 Impact of IDP Estimation Algorithm

In this experiment, we show the benefits of the proposed IDP. We compare

the performance with a local estimation algorithm that estimates the number of

people based on the spectrum at current timestamp only.

For fair comparison, the quasi-bilateral filter is also applied to the local es-

timation algorithm. The comparisons of TP and accuracy for the two algorithms

are portrayed in Fig. 3.13 and Fig. 3.14, respectively. The results shows that IDP

considerably improves the performance for both datasets, which demonstrates

the gains contributed by leveraging time diversity in counting.

3.6.3.3 Impact of Quasi-bilateral Filter

In this experiment, we show the effect of the designed quasi-bilateral filter

on the performance of the people counting system. Fig. 3.11 (c) and Fig. 3.12 (c)

shows the confusion matrix of people counting system without filtering on datasets

collected in LAB and car respectively. By comparing the result with Fig. 3.11 (a)

and Fig. 3.12 (a), we can see that the quasi-bilateral filter can improve the per-

formance in most cases, especially when the number of people is larger than 3 in

the observation area. The reason is that when the number of subjects increases,

more motion interference will be introduced. Furthermore, it is more likely that

different breathing traces will merge. Even though we utilize the time domain

as well as frequency diversity by IDP, estimation error still can occure. Quasi-

bilater filter is a post-processing method that will further utilize the divisity in
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Figure 3.15: Experiment setup for resolution investigation.

time domain and thus correct the estimate outliers.

3.6.4 Resolution Discussion

To further investigate the impact of spatial separation as well as respiration

rate difference of human subjects, we perform experiments with 3 participants

sitting with different spatial separations, as shown in Fig. 3.15. Considering the

volume of a human subject, the minimum distance is set as 70 cm. The dis-

tance between Tx and Rx is 3.2 m. To ensure a constant breathing rate separation

during the experiments, each of the subjects performs controlled breathing ac-

cording to a metronome. The breathing rate separations of [0.5, 1, 1.5, 2] RPM

are evaluated, respectively. Table. 3.1 and Table. 3.2 show the performance of our

system, where the 4-tuple (∗;∗;∗;∗) denotes the detection accuracy and the rela-

tive breathing rate accuracy with the 3 users at location a, b, and c respectively.

We can see that the breathing rate separation has a significant impact on the per-
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Spatial

separation

Frequency

separation
0.5 RPM 1 RPM

70 cm (65.5;98.7;98.0;98.7)1 (96.5;98.9;96.5;97.3)

100 cm (62.1;98.6;99.4;99.2) (96.6;98.6;98.4;98.9)

130 cm (65.0;98.1;98.5;99.7) (96.6;98.9;98.5;97.7)

1 The 4-tuple (∗;∗;∗;∗) denotes the detection accuracy and the relative breathing rate

accuracy with 3 participants at location a, b, and c respectively. For example,

(65.5;98.7;98.0;98.7) denotes the detection accuracy is 65.5%, and the breathing

rate accuracy at location a, b, and c are 98.7%, 98.0%, and 98.7% respectively.

Table 3.1: Accuracy with different frequency and spatial separation - Part I.

formance, while the impact of the spatial separation is negligible. The detection

rate raises more than 30% when the breathing rates separation increases from

0.5 RPM to 1 RPM. The system achieves 100% detection rate once the breathing

rate separation is above 1.5 RPM. Besides, as long as the breathing rate trace has

been detected, our system can accurately estimate the breathing rate, and the

breathing estimation accuracy is above 94.7% for all of the test case.

3.7 Summary

This chapter presents a breathing rate trace tracking system using commer-

cial WiFi. The proposed system enables static crowd counting by multi-person
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Spatial

separation

Frequency

separation
1.5 RPM 2 RPM

70 cm (100;97.3;98.8;97.7) (100;98.1;98.9;94.7)

100 cm (100;97.8;99.0;98.9) (100;98.2;98.5;99.0)

130 cm (100;98.4;99.1;97.1) (100;98.1;99.3;99.4)

Table 3.2: Accuracy with different frequency and spatial separation - Part II.

breathing rate trace tracking with three key components: an adaptive subcar-

rier combination method that boosts breathing signals, an iterative dynamic pro-

gramming algorithm to extract the successive breathing traces from different in-

dividuals, and a trace concatenating algorithm that splices consecutive breathing

trace segments. Experiment results show a respective average accuracy of 87.14%

and 86.58% for an indoor office and car environments for people counting. Ad-

ditionally, the counting error is within 1 person for 97.9% of the time.
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Chapter 4: Multi-person Respiration Rate and Heart Rate Moni-

toring

4.1 Introduction

Over the past decade, great efforts have been put into designing and testing

different architectures for robust vital sign monitoring using off-the-shelf WiFi

devices [11, 12, 34, 82, 87, 88, 91]. However, due to the relative low carrier fre-

quency of WiFi systems, the antenna number of 2.4/5GHz WiFi is small, ren-

dering a low spatial resolution. Besides, the narrow bandwidth of WiFi systems

results in a coarse range resolution (7.5 meters with bandwidth 20MHz). There-

fore, when there is more than one user present, the received RF signals are re-

flected by the multiple users and it is hard to extract the vital signs for each of

them. Thus, most of the works assume there is a single person [82, 87, 91], or

the breathing rates of different users are distinct [11, 12, 88]. Moreover, since the

perturbation caused by the heartbeat is very small (i.e., 0.2 ∼ 0.5 mm [57]), the

embedded heartbeat signal has an extremely low Signal-to-Noise Ratio (SNR). It

is extremely difficult, if possible, to use commodity WiFi to estimate the heart

rate [34].
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Figure 4.1: An overview of ViMo.

In this chapter, we break down the limitation by leveraging an opportunity

in the emerging 60GHz WiFi (e.g., 802.11ad [2]), which is already available in

commercial routers [55]. We present ViMo, the first system that achieves multi-

person stationary/non-stationary detection and vital signs monitoring using an

impulse-based commodity 60GHz millimeter wave (mmWave) device. Differ-

ent from 2.4GHz/5GHz radios, 60GHz WiFi offers high directionality with large

phased arrays in small size thanks to millimeter-wavelength and precise time-

of-flight measurements brought by the large bandwidth. The advance in 60GHz

radio allows higher spatial resolution and range resolution, making it possible to

monitor respiration as well as heart rate for multiple persons simultaneously.

The rest of this chapter is organized as follows. We overview the system

in Section 4.2, followed by multi-person detection in Section 4.3 and heart rate

estimation in Section 4.4. The performance is evaluated in Section 4.5. This

chapter is summarized and overviewed in Section 4.6.
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4.2 System Overview

ViMo is a wireless system that can accurately detect human subjects and

estimate their vital signs by using purely the reflections of RF signals off the

users’ bodies. The processing flow of ViMo is shown in Fig. 4.1.

Enabling multi-person contactless vital sign monitoring using 60GHz WiFi

faces several challenges. First, due to the fast attenuation of 60GHz RF sig-

nal [39], the strength of signal reflected at a large distance is much smaller than

that at a short distance. Therefore, it is hard to detect human subjects with-

out prior calibration, let alone detecting the stationary/non-stationary status of

human subjects. Second, the minute heartbeat signals are easily corrupted by

measurement noises and concealed by the large scale respiration signals. Thus,

dedicated systems should be designed to resist the interference from respiration

and measurement noises when estimating the heart rate.

In order to detect human subjects at various distances, we apply a reflecting

object detector that adaptively estimates the noise level at various distances and

thus detects the presence of reflecting objects. To further differentiate the hu-

man subjects from static objects, we design a motion detector that identifies static

objects, stationary human subjects and human with large body motion. A target

clustering module is implemented to further identify the number of human sub-

jects and their respective locations. Moreover, to make a robust estimate of the

heart rate, we first devise a breathing signal eliminator to reduce the interference

from the respiration signal after the breathing rate is estimated. The elimina-
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tor can remove the harmonics of the breathing signal, as well as deal with the

spread of the breathing frequency component when the breathing period slightly

changes. To tackle with the random measurement noise, we leverage the station-

ary property of the heart rate and apply dynamic programming to estimate the

heart rate utilizing both the frequency and time diversity.

4.3 Target Detection

Since various indoor objects (e.g., wall, desk, etc.) reflect the EM wave,

before starting monitoring vital signs, we first need to detect human subjects in

the vicinity of the Tx and the Rx. Note that the human subjects may have body

motion and thus will change his/her location in the long run, ViMo divides the

duration of measurements into multiple blocks, where each block consists CIR

measurements of W seconds. Two adjacent blocks overlap by W −Ws seconds,

where Ws is the sliding window length.

4.3.1 Reflecting Objects Detector

Since the RF signal at 60GHz attenuates severely with distance [39], the

reflected energy from the same object varies with distance. To locate the human

subject, we first need to identify which spatial cell has reflecting objects.

The CIR measurement for the case when there is no reflecting object and

the case when there is a static reflecting object at cell (θ,φ, l) can be expressed as

h
empty
θ,φ,l (t) = ε(t), (4.1)
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Figure 4.2: CFAR window.

and

hstatic
θ,φ,l (t) = sH (θ,φ)[a� exp(−j2πd0

λc
)] + ε(t), (4.2)

respectively. It is obvious that the power response when there is a reflecting ob-

ject is much larger than the empty cell. However, it is impossible to find a univer-

sal predefined threshold for target detection. According to the propagation laws

of EM wave, for the same reflecting object, a shorter distance corresponds to a

larger reflecting energy. Furthermore, due to the Automatic Gain Control (AGC)

module, the amplitude of the CIRs will change for different measurements.

In order to find the adaptive power threshold for each block, ViMo uti-

lizes Constant False Alarm Rate (CFAR) algorithm [60] for target detection. The

power of the noise level for the Cell Under Test (CUT) is estimated by averag-

ing the power of neighboring cells. Furthermore, the guard cell is used to avoid

corrupting estimates with power from the CUT itself.

In specific, for each block, the input of CFAR detector is the time-averaging

amplitude of all the CIR measurements, i.e., h(θ,φ, l) = 1
WFs

∑
t |hθ,φ,l(t)|, where Fs
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is the sampling rate. Considering the attenuation property of EM wave, where the

reflected signal strength at a different distance of the same object will be different,

to determine the range of the reflecting objects, 1D-CFAR is adopted, as shown in

Fig. 4.2 (a). For each sector (θ,φ), ViMo convolves CIR measurements hθ,φ(l) with

the CFAR window to get the estimation of noise level n̂θ,φ(l). A scaling factor α is

applied to scale the estimated noise level. The detection threshold is thus set to

be αn̂θ,φ(l), and the taps with reflecting objects should be those whose amplitude

are above the detection threshold, as shown in Fig. 4.3. To determine the noise

level at the direction (θ,φ), we further employ 2D-CFAR for tap l, where the noise

level n̂l(θ,φ) is estimated by convolving CIR measurements hl(θ,φ) with the 2D-

CFAR window as shown in Fig. 4.2 (b). Scaling factor β is applied to scale the

estimated noise level. The reflecting object should be in the cell (l,θ,φ) whose

CIR measurement h(θ,φ, l) is above detection threshold αn̂θ,φ(l) and βn̂l(θ,φ)

simultaneously. Here, we define the indicator of reflecting object 1R(l,θ,φ) as

1R(l,θ,φ) = 1{|h(θ,φ, l)| >max(αn̂θ,φ(l),βn̂l(θ,φ))}, (4.3)

where 1{·} is the indicator function. Fig. 4.5 shows the cells with reflecting objects

in blue circles.

4.3.2 Motion Detector

Although the CFAR detector can identify which cell is occupied by reflect-

ing objects, it cannot differentiate whether the reflection comes from human or

not. Note that human subjects always accompany motion (either from breathing
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Figure 4.3: Example of 1D-CFAR.

or random body motion), which is a specific characteristic different from static

objects, we can design a motion detector to identify human subjects. Further-

more, most of the wireless vital sign monitoring systems assume there is only one

human subject and no random body motion during the measurement, and thus

the procedure of finding the human subjects is omitted [31, 44, 47, 50, 54, 56, 77],

which is neither natural nor realistic for practical deployment. So in this part, we

design a motion detector, which enables ViMo to identify static reflecting objects,

stationary human subjects and human subject with random body motion.

4.3.2.1 Static Reflecting Objects Detection

Note that even stationary human subjects can introduce motion due to res-

piration and heartbeat, and the distance change caused by respiration can be

discerned by phase change according to (2.5), we calculate the variation of the

phase of the CIR measurement Vt(θ,φ, l) for each candidate cell (θ,φ, l) selected

by reflecting objects detector discussed in Section 4.3.1, which is defined as

Vt(l,θ,φ) = Vart[∠hθ,φ,l(t)], (4.4)
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Figure 4.4: Example phase and ACF for target detection.

where Vart[·] denotes the variance over parameter t and ∠ denotes the phase of a

complex value. As shown in (4.2), for a static reflecting objects, Vt(θ,φ, l) would

be small, but for the cell with human subjects, either respiration or random body

motion will contribute a large Vt(θ,φ, l). ViMo utilizes a predefined threshold
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ηmin to identify a static reflecting objects if Vt(θ,φ, l) < ηmin
1. The phase signal

and its variance are shown in Fig. 4.4 (a) and Fig. 4.4 (d) respectively.

4.3.2.2 Stationary Human Subjects Detection

For a stationary human subject, periodic breathing signal can be observed

in the phase measurement according to (2.3), and Fig. 4.4 (b) gives an example

of a phase measurement with a stationary subject. A bin/cell with a stationary

subject would have Vt(θ,φ, l) > ηmin and a periodic phase signal whose frequency

within [bmin,bmax].

Note that spectrum analysis is widely used to evaluate the period of res-

piration in previous works [59]. However, the frequency resolution is ∆f = 60
W

Respiration Per Minute (RPM), whereW is the window length in seconds. There-

fore, to get an acceptable estimation accuracy of the respiration rate, the window

length should be long enough, which will cause a large delay. In our system, we

adopt a statistical approach by examining the Autocorrelation Function (ACF) of

the candidate CIR phase to evaluate the periodicity.

Here we denote the time-variant part of CIR phase measurement as

y(t) = sr(t) + sh(t) +n(t), (4.5)

where n(t) is the random phase offset introduced by noise, and is also a random

variable independent in time instances. Thus the ACF of y(t) can be calculated

1The chest movement caused by tidal breathing ranges from 4-12mm [20]. Considering the

wavelength of the 60GHz WiFi, the phase variance is 6.3-56.8. In ViMo, we set ηmin = 3.
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as

ρ(τ) =
Cov[y(t), y(t + τ)]

Cov[y(t), y(t)]
, (4.6)

where τ denotes the time lag, and Cov[·] denotes the con-variance operator. As-

sume that the distance change caused by heartbeat sh(t) is uncorrelated with the

distance change caused by respiration sr(t), then ρ(τ) can be expressed as

ρ(τ) =
Var[sr(t)]
Var[y(t)]

ρr(τ) +
Var[sh(t)]
Var[y(t)]

ρh(τ) +
Var[n(t)]
Var[y(t)]

ρn(τ), (4.7)

where Var[y(t)] = Var[sr(t)]+Var[sh(t)]+Var[n(t)]. ρr(τ),ρh(τ) and ρn(τ) denote the

ACF of respiration, heartbeat and noise respectively. Since we have Var[sr(t)]�

Var[sh(t)] and Var[sr(t)]� Var[n(t)], we have the approximation that ρ(τ) ≈ ρr(τ).

The ACF will have a definite peak at a certain delay which corresponds to the

breathing cycle as shown in Fig. 4.4 (e).

4.3.2.3 Motion Detection

Random Body Motion (RBM) has been one of the most difficult technical

challenges to wireless vital sign monitoring. Compared with the millimeter-scale

chest movement caused by heartbeats, the scale of RBM can be tens of centime-

ters. The time-variant part of CIR phase measurement with RBM can be mod-

elled as

y(t) = sm(t) + sr(t) + sh(t) +n(t), (4.8)

where sm(t) is the distance change caused by motion. Fig. 4.4 (c) shows an ex-

ample of the phase measurement with motion. Note that when the scale of RBM

is much larger than the respiration signal, the variation Var[sm(t)]� Var[sr(t)]�
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Figure 4.5: Example of cell merging.

Var[sh(t)], and thus Vt(l,θ,φ) > ηmax, where ηmax is a predefined threshold. When

the subjects have moderate RBM, the variance of phase may be within the thresh-

old, however, since RBM lacks periodicity in most case, we cannot observe a peak

in ρ(τ) as the stationary case as shown in Fig 4.4 (f). Therefore, we have the mo-

tion indicator 1M(·) defined as

1M(θ,φ, l) = 1(Vt(θ,φ, l) > ηmax ∪ ρ(τb) < Γ ), (4.9)

where 1(·) is the indicator function, τb is the first peak of ACF ρ(τ), and Γ is a

predefined threshold.

4.3.3 Cell Merging/Clustering

Due to the fact that more than one cells have the RF signals reflected off

a single human subject, a target clustering method should be employed before
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determining the target number and vital sign monitoring. Considering the size of

the human body, we can merge them into a cluster if the spacial distance between

these cells is within the threshold dmin. In ViMo system, we set the dmin as 0.8m

considering the typical body volume of human subjects. The cluster center of

stationary cells is the cell with the largest ACF peak, corresponding to the cell

with the human chest. The center of the RBM cells for each cluster is the cell

with the largest Vt(θ,φ, l), corresponding to the cell with the largest body motion.

Note that even for a stationary person, he/she can have body motion from the

body part away from the chest. So when the distance between stationary cells and

RBM cells is smaller than the threshold dmin, then these cells belong to the same

person, and the center of the cluster should be the representative of stationary

cells. The number of people is estimated by the number of clusters, where the

location of each person is the center of its corresponding cluster.

Fig. 4.5 shows an example for cells merging, where the ground truth is that

a human subject sits at 1m away from the device in a typical indoor office. The

reflecting objects detected by the CFAR detector is shown in blue circles. The

motion detector further differentiates cells with stationary subjects and RBM,

shown as red diamonds and green squares respectively. The representative of the

target is shown in solid black diamond.
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4.4 Heart Rate Estimation

In ViMo, we enable the heart rate estimation module once a stationary

subject has been detected. Since we check periodicity using ACF to determine

whether the cell contains a stationary respiration signal as shown in Section

4.3.2.2, we can easily determine the breathing cycle by finding the peak location

τr of ρ(τ), and the breathing rate should be

fr =
60
τr

(4.10)

Respiration Per Minute (RPM).

Note that heartbeats introduce minute movements of the chest [57], which

can be detected as small peaks in the unwrapped phase as shown in Fig. 4.6 (a).

Past works [5,8,85] try to directly utilize frequency analysis and Band-Pass Filter

(BPF) to estimate the heart rate. However, due to the harmonics introduced by

respiration, it is easy to pick up the wrong peak for estimation as shown in the

blue line in Fig. 4.6 (c). Thus, in order to get a higher estimation accuracy, we

first eliminate breathing signal before heart rate estimation.

4.4.1 Breathing Interference Elimination

Eliminating the breathing signal can improve the Signal-to-Interference-

plus-Noise Ratio (SINR) of the heartbeat signal, and thus improve the estimation

accuracy. The polynomial fitting has been used [44, 50, 77] to remove respira-

tion motion. However, one of the main drawbacks of the polynomial fitting is
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Figure 4.6: Example of breathing interference elimination.

the order selection. In previous works, the order is carefully selected by em-

pirical experience, but under-fitting or over-fitting can be easily triggered when

the experimental setting is changed (e.g., change of sampling rate or window

length). Besides, the elimination effect is also related to the breathing rate. In

other words, in order to achieve a similar elimination effect, the polynomial order

should adapt to the user’s breathing rate, which is not practical for robust daily

deployment. To avoid this effect, ViMo adopts smoothing spline to estimate the

breathing signal.

Let {ti , y(ti) : i = t0, t0+Ts, · · · , t0+W } to be a set of observations in the current

window, where Ts = 1
Fs

is the time interval between two adjacent samples, t0 is the

initial time of the observation window, and W is the window length. Compared
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to the heartbeat signal, the respiration signals have larger distance change and

lower frequency, thus, the estimate of the breathing signal sr(t) should be the

solution of

min
f̂

t0+W∑
i=t0

{y(ti)− f̂ (ti)}2 +λ
∫
f̂
′′
(t)2 dt, (4.11)

where λ ≥ 0 is a smoothing parameter. The second term evaluates the smoothness

of a function. The smoothing parameter controls the trade-off between fidelity

to the data and smoothness of the function estimate. f̂ is the estimate of sr(t),

defined as

f̂ (t) =
t0+W∑
t=t0

f̂ (ti)fi(t), (4.12)

where fi(t) are a set of spline basis function [1].

To get the optimum solution of (4.11), we first define the vector m̂ = [f̂ (t0), · · · , f̂ (t0+

W )]>, and the roughness penalty has the form∫
f̂
′′
(t)2 dt = m̂>Am̂, (4.13)

where the elements of A are
∫
f
′′
i (t)f

′′
j (t) dt. Therefore, the penalized sum-of-

squared fitting error can be written as

min
m̂
{y− m̂}>{y− m̂}+λm̂>Am̂, (4.14)

where y = (y(t0), · · ·y(t0 +W ))>. The minimizer of problem (4.14) is thus

m̂∗ = (I+λA)−1y. (4.15)

The heartbeat after elimination of the breathing signal is thus

ŝh(t) = y(t)− m̂∗>f(t), (4.16)
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Figure 4.7: Spectrogram of residual signal.

where f(t) is the vector form of spline basis functions.

The dashed line in Fig. 4.6 (a) shows the estimation of the breathing signal.

After breathing signal elimination, the spectrum of the residual signal after ap-

plying a BPF with passing band [hmin hmax] is shown in the orange dashed line

in Fig. 4.6 (c). The spectrum of the phase without eliminating respiration signal

using the same BPF is shown in the blue solid line. It is obvious that the SINR of

the heartbeat signal after breathing elimination is boosted. Specifically, the SINR

is boosted from 1.65 dB to 5.65 dB by eliminating the respiration signal.

4.4.2 Heart Rate Estimation using Spectrogram

Breathing signal elimination can enhance the SINR of the heartbeat sig-

nal, and thus, increase the accuracy of heart rate estimation. However, the ran-

dom measurement noises can still corrupt the estimation at some time instances.

To further increase the estimation accuracy, in ViMo, we leverage the station-
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ary property of heart rate and utilize the diversity in both frequency and time

domains for reliable estimation.

Note that the heart rate can smoothly change over time, we model the heart

rate as a Markov process, where the variation of heart rate between two adjacent

time bins follows a normal distribution N (0,σ2), and the Probability Density

Function (PDF) is denoted as p(f ). After breathing signal elimination, we per-

form Fast Fourier Transform (FFT) on the residual and concatenate the PSD of

each window to get a spectrogram as shown in Fig. 4.7.

Since the operation of FFT automatically discretizes the continuous fre-

quency in the range of [hmin,hmax] 2 into |Q| frequency components, where |Q|

means the cardinality of set Q, the heart rate can be modelled as a Markov chain,

and the transition probability matrix is denoted as P ∈ R|Q|×R|Q|, which is defined

as

P(q,q
′
) = P(g(n) = q

′
|g(n− 1) = q)

=
∫ (q

′−q+ 1
2 )∗∆f

(q′−q− 1
2 )∗∆f

p(f )df ,
(4.17)

where ∀q,q′ ∈ Q. Here, g : [1,N ] −→Q is a mapping indicating the frequency com-

ponent at the given time, andN is the total time instances of a given spectrogram.

In principle, the heartbeat signal is more periodic than noise and other mo-

tion interference. Thus, it is more likely to be observed as peaks in most of the

time. Moreover, considering that one’s heart rate will not fluctuate a lot within a

short period, estimations of heart rates should form a trace that achieves a good

balance between frequency power and temporal smoothness.

2In ViMo, we set hmin and hmax as 60 Beat Per Minute (BPM) and 120BPM respectively.
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The most probable heart rate trace can be found by solving

g∗ = argmax
g

E(g)−κC(g), (4.18)

where κ is a regularization factor. g is denoted as a trace, where

g = (n,g(n))Nn=1. (4.19)

E(g) is the power of trace g , defined as

E(g) =
N∑
n=1

E(n,g(n)), (4.20)

where E(n,q) denotes the energy at time bin n and frequency component q. The

smoothness of the trace can be evaluated by a cost function C(g), defined as

C(g) , − logP(g(1))−
N∑
n=2

logP(g(n− 1), g(n)), (4.21)

where the frequency transition probability P(g(n − 1), g(n)) can be calculated by

(3.5). Without loss of generality, we assume a uniform prior distribution, i.e.,

P(g(1)) = 1
|Q| .

This problem can be solved by dynamic programming [69]. The result of

heart rate trace estimation is shown as the black line in Fig. 4.7, where the refer-

ence measured by a gold standard electrocardiogram (ECG) sensor [53] is marked

as the white line. The estimation result of directly using the location of the high-

est peak of the spectrum as the heart rate estimation is shown as the blue dashed

line. We can see that when the noise is too large (e.g., at time instance t = 32

s), the estimation without dynamic programming will locate at the wrong peak,

resulting in a large estimation error. By using dynamic programming, the maxi-

mum estimation error decreases from 5 BPM to 3BPM, as shown in Fig. 4.7.
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4.5 Experiment Evaluation

In this section, we evaluate ViMo in practical settings using a commodity

802.11ad chipset in a typical office of size 3.5 m× 3.2 m as shown in Fig. 4.8. We

embed ViMo in a Commodity Off-The-Shelf (COTS) 60GHz WiFi [55] as shown in

Fig. 4.8 (a). Specifically, the chipset we used for ViMo has 32 antennas assembled

in a 6 × 6 layout with a form factor of 1.8 cm× 1.8 cm for both the transmitter

(Tx) and the receiver (Rx). The chipset operates at 60GHz center frequency with

3.52GHz bandwidth, providing a range resolution of 4.26 cm. To extract CIR,

the Tx transmits a known pulse composed of a complementary Golay sequence.

A Golay correlator is implemented in the Rx hardware and the correlation result

corresponds to the CIR. We enroll 8 participants (4 male and 4 female) aging

from 22 to 35 for testing. The ground truth is provided by a commercial ECG

sensor with a chest strap [53]. The sampling rate of ViMo is 20Hz.

To further evaluate our system, we compare it with the mmVital [85], which

is the state-of-art wireless vital sign monitoring system using an impulse-based

mmWave radio. mmVital leverages the RSS from a pair of horn antenna and

finds the highest magnitude peak as well as its adjacent bins in the frequency

domain to form a custom narrow BPF, and then counts peaks of the time-domain

filtered signal to determine the breathing rates as well as heart rate. In order to

make a fair comparison, same as ViMo, phases of CIRs from the detected cells

are used as the input of mmVital algorithm, rather than the coarse information

of RSS. To estimate both respiration and heart rate, the adaptive narrow BPF and
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(a) Device (b) LOS setting (c) NLOS setting

Figure 4.8: Experiment setup.

IFFT are implemented as illustrated in mmVital [85]. The window length for

both mmVital and ViMo are set to be 60 seconds, and systems give output every

second. Note that mmVital [85] estimates vital signs according to the number of

peaks in a time window (i.e., the estimation is an integer), the resolution of its

breathing rate and heart rate estimation are 1 RPM and 1 BPM respectively.

4.5.1 Overall performance

We first report the overall performance of ViMo in the measurement of

Respiration Rate (RR) and Heart Rate (HR). The accuracy is calculated over 17

experimental runs of 3 minutes for all 8 participants. During the experiment,

participants wear casual clothes, such as sweaters and shirts, sit in front of the

device and breathe normally. Various factors including user and device place-

ment diversity (e.g., distance, orientation, incident angle and blockage), motion

interference and multiple users’ position are considered. The detection rate of

the system is 97.86% and the overall median error of RR and HR evaluated by
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ViMo is 0.19 RPM and 0.92 BPM respectively. mmVital achieves similar perfor-

mance w.r.t. RR, but its median error of HR is 1.6 BPM, 73.91% worse than ViMo.

We further compare the performance of ViMo with Vital-Radio [5], which is the

representative multi-user vital sign monitoring system build upon FMCW radar.

Vital-Radio achieves 98.5% median accuracy of HR estimation (0.95 BPM) when

the person is 1 m away from the device, whereas, the median error of HR esti-

mation for ViMo is 0.58 BPM. Note that although the SNR of our device is lower

than FMCW radar, ViMo still achieves better performance. The advantage of our

system benefits from the breathing signal elimination module and Dynamic Pro-

gramming (DP) algorithm when estimating the HR, which can increase the SINR

of the heartbeat signal.

Moreover, experimental results show that ViMo can effectively detect the

stationary/non-stationary state of human subjects, and can make accurate esti-

mates of both RR and HR when slight user motion incurs (e.g., shaking head).

Comparing with mmVital, which does not take users’ motion into consideration,

ViMo makes an important improvement towards practical deployment. The de-

tails will be discussed in the following sections.

4.5.2 Impact of Distance

In this section, we investigate the effect of the distance between the de-

vice and human subject on the estimation accuracy. Participants sit at different

distances facing the device as shown in Fig. 4.9 (a). The empirical Cumulative
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Figure 4.9: Experiment setup and result for the impact of distance.

Distribution Function (CDF) of the absolute error of RR and HR estimation are

shown in Fig. 4.9 (b) and Fig. 4.9 (c) respectively, where the performance of ViMo

and mmVital are shown in solid lines and dash lines respectively. To account for

the mis-detection, we set the estimation to be 0 BPM when the target is missed.

As expected, the performance degrades with distance due to the SNR degra-

dation. The median error for RR of ViMo is within 0.15 RPM when the distance

is within 1.5 m and it increases to 0.22 RPM when the distance increases to 2

m. For HR estimation, the median error of ViMo increases from 0.42 BPM to 0.9

BPM when the distance increases from 0.5 m to 2 m. Furthermore, we can see

that the degradation of RR estimation is less than the HR estimation due to the
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higher SNR of the breathing signal.

The CDF of RR estimation using mmVital algorithm is stepwise since the

resolution of both ground truth and estimation is 1 BPM. It is obvious that both

algorithms achieve similar performance as for RR estimation, but ViMo achieves

a higher resolution. Moreover, for HR estimation, ViMo outperforms mmVital

for all the 4 settings, and the performance gap becomes larger with the incre-

ment of distance. The main reason is that the breathing signal elimination helps

to improve the SINR of the heartbeat signal as discussed in Section 4.4.1. Be-

sides, DP algorithm in ViMo also leverages the time diversity besides the fre-

quency diversity to make estimations, which can further alleviate the impact of

the measurement noises.

4.5.3 Impact of Orientation

In this study, we investigate the impact of human orientation on estimation

accuracy. The orientation corresponds to the closest part of the user w.r.t. the

device as shown in Fig. 4.10 (a). The distance from the user to the device is set

to be 1 m. Fig. 4.10 (b) and Fig. 4.10 (c) show the estimation performance of RR

and HR respectively.

It is shown that the “front” setting achieves the best performance, whereas,

the “back” setting has the worst performance, for both RR and HR estimation.

This result is due to the distinct displacement of reflecting part caused by respi-

ration in different orientations. Since smaller displacement means lower SNR of
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Figure 4.10: Experiment setup and result for the impact of orientation.

breathing signal, when the displacement is too small, mis-detection occurs. The

detection rate when the subject sits facing the device is 100%, and it degrades to

99.06% and 99.37% when the left and right side of the chest facing the device.

The detection rate drops to 83.83% when human subjects sit back to the device.

It is worth noting that even similar detection rates are achieved when partici-

pants sitting at the left and right orientation, the HR estimation performance is

distinct, where the “left” setting outperforms the “right” setting. This is due to

the physiological structure of human beings, where the vibration caused by the

heartbeat is larger on the left side of the chest. Similarly, ViMo has equivalent

performance in terms of RR estimation compared with mmVital, however, it has
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Figure 4.11: Experiment setup and result for the impact of incident angle.

much better performance of HR estimation for all the 4 settings, as shown in

Fig. 4.10 (c).

4.5.4 Impact of Incident Angle

In this part, we investigate the impact of the incident angle on the estima-

tion performance, where human subjects are asked to sit at angles [0◦,15◦,30◦],

and the distance between human and device is 1 m, as shown in Fig. 4.11 (a). The

CDF of the absolute estimation error of RR and HR with different incident angles

are shown in Fig. 4.11 (b) and Fig. 4.11 (c) respectively.

We can see that for both RR and HR estimation, the accuracy decreases with
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Figure 4.12: Experiment setup and result for the impact of blockage.

the increment of the incident angle. The reason is that the reflection loss depends

on the incident angle, and increment in incident angle increases the reflection

loss, rendering lower SNR of the reflected signal. However, since the SNR of

the breathing signal is much higher than the heartbeat signal, the performance

degradation of RR estimation is not as severe as HR estimation. Furthermore, we

can see that the performance of ViMo is much better compared with mmVital in

terms of HR estimation, especially in the case of a large incident angle.
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Glass Cotton Wood White board

Figure 4.13: Experiment setup with different blockage materials.

4.5.5 NLOS Case

The RR and HR estimation accuracy are evaluated for the through-the-wall

case, and the experiment setup is shown in Fig. 4.12 (a). Participants are asked

to sit on the other side of a drywall, and the distance between the device and

the human subject is 1 m. The median error of RR estimation increases from

0.15 RPM to 0.25 RPM due to the penetration loss, and the median error of HR

estimation increases from 0.6 BPM to 1.4 BPM, as shown in Fig. 4.12 (b) and

Fig. 4.12 (c) respectively.

In order to further investigate the influence of blocking material (corre-

sponding to different penetration loss), we conduct a set of experiments, where

different commonly used materials are used to block the LOS path, as shown in

Fig. 4.13. Since the penetration loss is distinct for different material, the perfor-

mance drop is different. The Mean Absolute Error (MAE) of RR and HR estima-

tion is shown in Table. 4.1.

Besides, note that clothes can be considered as a cotton layer between the
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Blocking

material

None

(LOS)
Glass

Cotton

pad

Wood

panel

White

board
Drywall

Mean RR

error (RPM)
0.14 0.23 0.24 0.26 0.28 0.29

Mean HR

error (BPM)
1.29 2.66 3.45 4.82 4.85 5.95

Table 4.1: Performance with different blockage materials.

Clothes Type T-shirt Sweater Winter jacket

Median absolute error

of RR (RPM)
0.125 0.142 0.164

Median absolute error

of HR (BPM)
0.5 0.58 1.13

Table 4.2: Impact of thickness of clothes.

human subject and the device, and the penetration loss is related to the thickness

of clothes. To investigate the influence of the thickness of clothes, we conduct a

similar experiment as that in Fig. 4.13, where participants are asked to wear T-

shirts, sweaters and winter jackets during the experiment. The median absolute

error of RR and HR are shown in Table. 4.2. We can see that the estimation

accuracy decreases with the increment of the thickness of clothes. However, for

the general indoor wearing (e.g., T-shirt and sweater), the degradation can be

negligible.

76



#1 #2 #3 #4 #5 #6 #7 #8

Subject

0

0.5

1

R
e

s
p

ir
a

ti
o

n
 R

a
te

 E
rr

o
r

(a)RR estimation

#1 #2 #3 #4 #5 #6 #7 #8

Subject

0

5

10

15

A
b
s
o
lu

te
 E

rr
o
r 

(B
P

M
)

(b)HR estimation

Figure 4.14: Impact of user heterogeneity on estimation accuracy.

4.5.6 Impact of User Heterogeneity

In this part, we investigate the impact of the user heterogeneity on the per-

formance. The data of all the settings above are used to get the performance of

each user. The difference in error distribution can be caused by various factors,

such as reflection loss and heartbeat strength, etc. Fig. 4.14 (a) gives the RR es-

timation performance, with the maximum median error within 0.2 RPM for all

participants. Fig. 4.14 (b) shows the error distribution of absolute HR error of all

8 subjects, where all of them have a median error within 2 BPM.

4.5.7 Impact of Body Movement

We evaluate the performance of ViMo when users have different motion

states. Participants are asked to shake head (1 ∼ 3 cm) and move the body (4 ∼ 5

cm) every 20 seconds. The distance from the device to the user is 1 m with inci-

dent angle 0◦. We also evaluate the performance when users answer phone with

headset (continuously talking). The MAE of RR and HR are shown in Table. 4.3.
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Body state Stationary
Shaking head

(left-right)

Moving body

(left-right)
Speaking

Mean RR

error (RPM)
0.14 0.28 0.51 1.22

Mean HR

error (BPM)
1.29 4.16 3.06 6.31

Table 4.3: Performance for different motion states.

All the cases achieve more than 99.7% detection rate, where for the case of mov-

ing body, in 27% of the duration we detect large body motion, and thus the vital

signs estimation module will not be triggered. As for the time that body motion is

within the detection threshold (a.k.a, stationary period), the vital sign estimation

module is triggered, and the mean HR error is 3.06 BPM for the case of moving

body (the relative error is 4%). However, for the case when people are answer-

ing the phone, the chest will involve RBM caused by speaking more frequently,

resulting in the worst performance for all the test cases.

4.5.8 Multi-user Case

In this part, we first study the impact of the angular separation between

users, where two users sit at a distance of 1 m away from the device with different

separation angles as shown in Fig. 4.15. We define the Detection Index (DI) of a

separation angle as the ratio between the number of samples when the number of

detected targets matches the ground truth and the total number of samples. We
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Figure 4.15: Experiment setup for the impact of separation angle.

also define the False-alarm Index (FI) of a separation angle as the ratio between

the number of samples when the number of detected targets is larger than the

ground truth and the total number of samples. Table. 4.4 shows the median error

of RR and HR estimation for both users.

Compared to the single-user scenario, the performance degrades at small

separation angles (i.e., 30◦), but the performance is similar to the single-user

scenario if the separation angels are large enough (i.e., larger than 45◦). This is

because when the distance of two targets is small enough, the distance of the

candidate cells with each user can be smaller than the predefined threshold dmin.

Thus, the two clusters will be merged together and there will be only one repre-

sentative cell left, resulting in a mis-detection. Besides, the cells with high SNR

signals of one user can be merged with the other user’s, therefore, the SNR of the

representative cell for vital signs estimation can drop, resulting in degradation

of the performance.

To further evaluate ViMo’s accuracy for multi-user vital sign estimation,
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Separation

angle
DI FI

Med. error

of breathing

Med. error

of heart rate

30◦ 0.84 0 (1.14;0.15) (2;1)

45◦ 0.98 0 (0.22;0.14) (1;1)

60◦ 1 0 (0.21;0.14) (1;1)

75◦ 1 0 (0.21;0.12) (1;1)

Table 4.4: Performance for different separation angles.

we perform controlled experiments, where we ask 3 users to sit in parallel as

shown in Fig. 4.16. ViMo detects the location of each target and simultaneously

estimate their vital signs. When mis-detection happens, we define the relative

error as 1 as before. Fig. 4.17 shows the mean relative accuracy of RR and HR as

well as the detection rate at each location. We can see that for all the 3 locations,

ViMo achieves the mean accuracy of both RR and HR over 92.8%. As for the

detection rate, since the separations between the middle location and the other

two locations are not large enough, and the middle location is more distant, the

detection rate drops at the middle location. However, the overall detection rate

over time is still above 92.7% during the testing.

4.6 Summary

In this chapter, we present ViMo, a multi-person Vital sign Monitoring

system using a single commercial 802.11ad device. We devise a multi-object

stationary/non-stationary detection algorithm to locate and count human tar-
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Figure 4.17: Multi-user accuracy and detection performance.

gets without any prior calibration. In addition to the instantaneous estimating

breathing rates using ACF with high accuracy, we further design a robust heart

rate estimator, which eliminates the interference of the breathing signal and then

estimates the heart rate leveraging both the time and frequency diversity. We

evaluate the performance of ViMo by various settings, including NLOS and mo-

tion artifacts, the most challenging scenarios for wireless vital signs monitoring.

Experiment results show that ViMo can accurately monitor vital signs, with a

median error of 0.19 RPM and 0.92 BPM, respectively, for RR and HR estimation.
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Chapter 5: mmHRV: Contactless Heart Rate Variability Monitor-

ing

5.1 Introduction

Heart Rate Variability (HRV), defined as the variation of the periods be-

tween consecutive heartbeats, i.e., Inter-Beat Intervals (IBI), is an important in-

dicator of the overall health status of an individual [4]. Analysis of the HRV

has been proved to be a powerful tool to assess cardiac health and evaluate the

state of the Autonomic Nervous System (ANS) [64]. High-accuracy HRV mon-

itoring is required in numerous applications such as early diagnose of cardio-

vascular disease, stress evaluation, emotions recognition and anxiety treatment,

etc. [10, 17, 23, 68, 93].

Traditional measurements of the HRV are obtained by continuously mea-

suring the IBIs using the electrocardiogram (ECG) or photoplethysmogram (PPG)

sensors, both of which are dedicated medical devices and have to be physically

contacted with the human skin. However, using ECG or PPG is uncomfortable

for users and sometimes may cause skin allergies. Therefore, how to monitor the

HRV in a non-contact way has become an important topic for both academia and
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industry.

While many existing works have validated the feasibility of vital sign mon-

itoring using RF signal, most of them can only estimate the Respiration Rate

(RR) [5, 11, 91] and the Heart Rate (HR) [6, 45, 48, 75, 85], from which one can-

not obtain the HRV without the precise timing of each heartbeat. As a result,

accurate RF-based HRV monitoring needs to be further investigated.

In this chapter, we present mmHRV, the first multi-person HRV estima-

tion system using Commodity Off-The-Shelf (COTS) millimeter-Wave (mmWave)

radio. The rest of the paper is organized as follows.The system overview is pre-

sented in Section 5.2, followed by the target detection in Section 5.3 and the

heartbeat extraction and HRV estimation in Section 5.4. The performance is eval-

uated in Section 5.5. We summarize the chapter in Section 5.6.

5.2 System Overview

mmHRV is a wireless system that can accurately detect the heartbeat signal

of human subjects and estimate their HRV by purely using the RF signals re-

flected off the users’ bodies. The processing flow of mmHRV is shown in Fig. 5.1.

First, a Frequency-Modulated Continuous Wave (FMCW) radar transmits the RF

signal and captures the reflections of human subjects and static objects. In or-

der to detect human subjects at different locations, the Bartlett beamformer is

applied to get the channel information at different azimuth-range bins. Then,

we devise a target detector that adaptively estimates the noise level at various
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Figure 5.1: Processing flow of mmHRV.

distances and azimuth angles and thus detects the presence of reflecting objects.

The variance of phase is further utilized to distinguish human subjects and static

objects. To identify the number of target and their locations, a non-parametric

clustering algorithm is employed.

To extract the heartbeat signal from the phase information that is modu-

lated by both respiration and heartbeat, we devise a heartbeat signal extractor,

which can decompose the phase signal into several narrow-band signals concur-

rently and give an estimate of heartbeat wave. HRV can be further analyzed based

on the Inter-Beat Intervals (IBIs) derived from the estimated heartbeat signals.

5.3 Target Detection

For practical application, target detection needs to be performed before vi-

tal sign detection, which has been omitted in many works. The target detection is

hard to achieve, especially in the indoor scenario, where there are various objects

(e.g., wall, desk, metal objects, etc.) with strong reflections of EM waves.

84



2e cd  

ed4 ed

4
sin(

)

e
d





0  2 3

4 5 6 7

TX1 TX2 RX

Phase corr. to TX1

Phase corr. to TX2

Figure 5.2: Antenna Deployment.

5.3.1 Range-FFT and Digital Beamforming

In our system, we take advantage of the multiple antennas of the chipset,

and use 2 Tx antennas and 4 Rx antennas, as shown in Fig. 5.2. To increase the

azimuth resolution, the chirps are transmitted in the Time-Division Multiplexing

(TDM) mode [46] by transmitting sequentially through two Tx antennas. This is

equivalent to the 8-element virtual array as shown in Fig. 5.2.

The channel information for the case when there is a static object is

h(l,n,m) = Aexp {−j(2πfbnTf +
4πd0

λc
+ 2π

dl sinθ
λc

)}, (5.1)

where dl is the relative distance introduced by virtual antenna l. θ is the azimuth

angle of the target as shown in Fig. 5.2. d0 is the distance between the object and

the device, which stays constant in slow time.

Note that the channel information corresponding to the reflecting object

is a periodic signal in fast time, and the periodicity is related to the distance

as shown in Equ. (2.15) and Equ. (5.1). To determine the range information of

reflecting objects, the FFT is performed over the fast time for each chirp, i.e.,
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Figure 5.3: Example of the reflecting object detector.

range-FFT, and the channel information can be written as hr(l,m), where r is the

range tap index. The range taps corresponding to the reflecting objects would

observe larger energy compared with that without reflecting objects. To further

determine the azimuth angles of the reflecting objects, digital beamforming is

performed over all antenna elements for each range tap, and the channel infor-

mation corresponding to range r and azimuth angle θ can be expressed as

hr,θ(m) = sH (θ)hr,l(m) + ε(m), (5.2)

where sH (θ) is the steering vector towards angle θ. In mmHRV, Bartlett beam-
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former [40] is adopted, where the coefficient of the l−th antenna is

sl(θ) = exp(−j2πdl sinθ
λc

). (5.3)

ε(m) is the additive white Gaussian noise assumed to be independent and iden-

tically distributed (I.I.D) for different range-azimuth bins. the channel informa-

tion vector at range tap r overall all antenna elements is denoted as hr,l(m) =

[hr,1(m),hr,2(m), . . . ,hr,L(m)]. Therefore, for each sample m in slow time, we will

have a channel information matrix h(r,θ), which contains channel information at

different location bins with range r and azimuth angle θ. Fig. 5.3 (b) shows the

amplitude of the channel information at the range-azimuth plane.

5.3.2 Reflecting Object Detector

To locate human subjects, we first need to identify the range-angle bins with

reflecting objects. Note that the channel information for the bins without any re-

flecting object only contains noise, and thus, the energy of channel information

for the bins with reflecting objects is larger than those without any reflecting

objects, as shown in Equ. (2.15) and Equ. (5.1) respectively. However, it is im-

possible to find a universal predefined threshold for target detection. According

to the propagation laws of EM wave, for the same reflecting objects, a shorter

distance corresponding to a larger reflecting energy. In mmHRV, we utilize the

Constant False Alarm Rate (CFAR) [60] detector, which can estimate the noise

level by convolving the CFAR window (shown in Fig. 5.3 (a)) with the channel

information at the range-azimuth plane (shown in Fig. 5.3 (b)), and the location
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bins with reflecting objects are those whose energy is above the noise level, as

shown in Fig. 5.3 (c). Fig. 5.3 (d) shows the example of CFAR detection in the

range domain, where the threshold is shown in the dashed line.

5.3.3 Human Subjects Detector

Although Reflecting object detector can filter out the empty taps, it cannot

distinguish human subjects from static reflecting objects. Note that different

from static objects, the distance between human subjects and the device will

change over slow time due to motions (e.g., respiration and heartbeat), and thus

result in a phase change as shown in Fig. 5.4 (a). Therefore, to further filter out

the static reflecting objects, we leverage the phase information of the candidate

bins selected by the Reflecting object detector.

In specific, when the EM wave is reflected by a human subject, the phase

will change over slow time due to the modulation of human motions. Therefore,

there is a large phase variance for the bins corresponding to human subjects.

However, for bins corresponding to the static objects (e.g. desk, wall, etc.), the

phase variance will be much smaller, as shown in Fig. 5.4 (a) and Fig. 5.4 (b).

So in mmHRV, to filter out the static objects, we check the variance of the phase

information over slow time, and the bins corresponding to a human subject are

those whose phase variance above a certain threshold.

Note that there will be more than one bin corresponding to a human sub-

ject considering the volume of a human subject, as shown in Fig. 5.4 (c). To iden-
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Figure 5.4: Example of the human subject detector.

tity the target number, mmHRV utilizes a non-parametric clustering method,

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algo-

rithm, to cluster the candidate bins without prior knowledge of cluster number.

The clustering result is shown in Fig. 5.4 (d). The representative of each cluster is

the bin with the best periodicity. In specific, the bin with the highest peak for the

first peak of the auto-correlation is selected, which corresponds to the bin with

the highest SNR of the vital signs [75].

5.4 Heartbeat Extraction and HRV Estimation

Estimating HRV requires accurate estimation of Inter-Beat Intervals (IBIs),

therefore, we need to extract the displacement change caused by heartbeats (a.k.a.,
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heartbeat wave) from the compound displacement change of chest wall and de-

tect moments in which heartbeats occur.

5.4.1 Heartbeat Extraction Algorithm

5.4.1.1 Problem Formulation

Recall that the phase information reflects the distance change caused by

vital signs. For simplicity, we directly use the analog form of signals, and the

distance change of the human chest can be written as

y(t) = sm(t) + sr(t) + sh(t) +n(t), (5.4)

where sm(t) denotes the distance change caused by body motion. sr(t) and sh(t)

denote the distance change caused by respiration and heartbeat, respectively. n(t)

is the random phase offset introduced by noise, which is independent with the

phase change caused by vital signs.

Note that both sr(t) and sh(t) are quasi-periodic signals, where the period

can slightly change over time. Besides, we assume the body motion introduces

few oscillations, i.e., a base-band signal. Thus, the signals related with the human

subject are sparse in the spectral domain and we can reconstruct these signals

with a few band-limited signals. In specific, each component uk(t) is assumed to

be compact around a center pulsation ωk, which is to be determined along with

the decomposition. Moreover, the decomposition should achieve the spectrum

90



sparsity and data fidelity at the same time, which is modeled as

min
uk∈U ,ωk∈Ω

α
K∑
k=1

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk(t)]exp(−jωkt)

∥∥∥∥∥2

2
+

∥∥∥∥∥∥∥y(t)−
K∑
k=1

uk(t)

∥∥∥∥∥∥∥
2

2

, (5.5)

where the first term evaluates the bandwidth of the analytic signal associated

with each component, and the second term evaluates the data fidelity. K is

the total number of decomposition components, where U = {u1(t), . . . ,uK (t)} and

Ω = {ω1, . . . ,ωK } are the set for all components and their center frequencies, re-

spectively. α is a parameter for balancing the bandwidth constraint and data

fidelity.

Once the hyper-parameters are known, the optimization problem in (5.5)

can be solved by alternatively updating uk(t) and ωk until convergence [16]. To

update uk, the subproblem can be written as

uk(t) = argmin
uk(t)

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk(t)]exp(−jωkt)

∥∥∥∥∥2

2
+

∥∥∥∥∥∥∥y(t)−
K∑
i=1

ui(t)

∥∥∥∥∥∥∥
2

2

. (5.6)

By using the Parseval theorem, the problem can be rewritten as

uk(ω) = arg min
uk(ω)

α ‖jω[(1 + sgn(ω+ωk))uk(ω)]‖22 +

∥∥∥∥∥∥∥†(ω)−
K∑
i=1

ui(ω)

∥∥∥∥∥∥∥
2

2

, (5.7)

where uk(ω) and †(ω) are the Fourier transfer of uk(t) and y(t) respectively. After

taking integrals over frequency and performing a change of variable, we can get

the updating formula, where

uk(ω) =
†(ω)−

∑
i,i,kui(ω)

1 + 2α(ω −ωk)2 . (5.8)

Note that the center frequenciesωk only appears in the bandwidth constraint and

thus the subproblem can be written as

ωk = argmin
ωk

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk(t)]exp(−jωkt)

∥∥∥∥∥2

2
. (5.9)
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Figure 5.5: Example of heartbeat extractor.

As before, we find the optimum in Fourier domain, and we have

ωk = argmin
ωk

∫ ∞
0

(ω −ωk)2|uk(ω)|2dω. (5.10)

The minimizer of the above quadratic problem is

ωk =

∫∞
0
ω|uk(ω)|2dω∫∞

0
|uk(ω)|2dω

. (5.11)

Fig. 5.5 illustrates the decomposition of a typical one-minute phase signal from

the experiment, where the original phase information has been decomposed into

4 components. The first component reflects the body motion of the human sub-

ject, the second component is the respiration motion, and the third component is

the heartbeat wave. Since the noise has different vibration characteristics as vital

signals, it falls into a different mode as well as in the residual of the decomposi-

tion of the signal, as shown in Fig. 5.5.
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5.4.1.2 Algorithm Design

It has been proven that the decomposition problem can be solved once the

hyper-parameters are properly defined. However, it is hard to predefine these

hyper-parameters in real applications for heartbeat wave extraction. First, the

human motion does not always exist and the human respiration sometimes will

have a strong second harmonic component, making it even harder to determine

the component number. Furthermore, the hyper-parameter α also influences

the decomposition performance. Before discussing how to choose the hyper-

parameter, we first discuss their influence on the decomposition result.

In specific, for the case that α is too small, i.e., the bandwidth constraint

is too loose, when K is too small, the mixing problem will happen so that two

signals may merge to a single decomposed component. However, when K is too

large, some of the decomposed components may consist of noise. For the case that

α is too large, i.e., the bandwidth constraint is too tight, whenK is too small, some

target signals may be discarded in noise. However, when K is too large, some

important parts of the signal may be separated into two or more decomposed

components.

In mmHRV, to accurately decompose the signal and get the component we

are interested, i.e., the heartbeat wave, we are trying to adaptively change the

component number K and α for different datasets. Here, we introduce a heuristic

method to change K and α as the iteration proceeds to get proper decomposition

result. Since the distance change caused by heartbeat is much smaller than the
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Figure 5.6: Example of IBI estimation.

distance change caused by respiration and human motion, once the component

corresponding to the heartbeat is decomposed, the component corresponding to

respiration and motion should be decomposed as well, considering the data fi-

delity constraint in the objective function. Therefore, the algorithm will termi-

nate once we get the component corresponding to the heartbeat. The details

about the algorithm are shown in Algorithm 2.
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Algorithm 2 Heartbeat wave extraction algorithm
1: Input y(t)

2: Set α← αmin, K ← Kmin

3: repeat

4: repeat

5: Initialize U and Ω, flag← 0, n← 0

6: repeat

7: n← n+ 1

8: for k = 1 : K do

9: update uk(ω) using equ.(5.8); update ωk using equ.(5.11)

10: end for

11: until convergence:
∑K
k=1

∥∥∥un+1
k −unk

∥∥∥2
2
/
∥∥∥unk∥∥∥ < ε or n > nmax

12: if exist ωk ∈ [hmin,hmax] and Range(IFFT(uk(ω))) < rmax then

13: flag← 1, break;

14: else

15: K ← K + 1

16: end if

17: until K > Kmax

18: if flag == 1 then

19: break;

20: else

21: α = 2α

22: end if

23: until α > αmax
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5.4.2 HRV Estimation

Once the heartbeat wave is extracted, the exact time corresponding to each

heartbeat can be identified by the peaks of the heartbeat wave. To further in-

crease the accuracy, normalization is performed before peak extraction.

In specific, the envelope of the heartbeat wave is estimated by taking mov-

ing average to the absolute value of the heartbeat component, shown as the dashed

line in Fig. 5.6 (a). We further perform a moving average filter to the original

heartbeat wave to reduce the noise. The normalized wave is the ratio between the

filtered heartbeat wave and the estimated envelope. IBIs can thus be derived by

calculating the time duration between two adjacent heartbeats. Fig. 5.6 (b) shows

a segment of heartbeat wave and its ECG ground-truth, where the dashed lines

show the exact time of each heartbeat from a commercial ECG sensor [25]. The

peaks of normalized heartbeat wave match with the ground-truth, and Fig. 5.6 (c)

shows the estimated IBIs and the ECG ground-truth.

The HRV features can be further obtained from the IBI sequence. In mmHRV,

we use the three most widely used metrics to evaluate the HRV [64]. One is the

Root Mean Square of Successive Differences (RMSSD), which measures the suc-

cessive IBI changes, and can be calculated by

RMSSD =

√√√
1

NIBI − 1

NIBI∑
i=2

(IBI(i)− IBI(i − 1))2, (5.12)

where NIBI is the total number of IBIs of the measurement. The standard de-

viation of all the IBIs (SDRR) measures the variation of the IBIs, which can be
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calculated as

SDRR =

√√√
1
NIBI

NIBI∑
i=1

(IBI(i)− IBI)2, (5.13)

where IBI is the empirical mean of the IBIs of each measurement. The metric

pNN50 measures the percentage of successive IBI that differ by more than 50

milliseconds (ms), which can be calculated by

pNN50 =

∑NIBI
i=2 1{(IBI(i)− IBI(i − 1)) > 50ms}

NIBI − 1
, (5.14)

where 1{·} is the indicator function.

5.5 Experiment Evaluation

This section introduces the evaluation details of the proposed mmHRV, in-

cluding practical system implementation, experiment setup, performance analy-

sis and also the comparison with the state-of-art work.

5.5.1 Methodology

We prototype the mmHRV system by leveraging a commodity mmWave

FMCW radar [26] in a typical office of size 3.5 m × 3.2 m as shown in Fig. 5.7.

By configuring the 2 Tx antennas and 4 Rx antennas into TDM-MIMO mode as

introduced in Section 5.3.1, the system can achieve a theoretical azimuth reso-

lution of 15◦. The Field of View (FoV) is 100◦ in the horizontal plane with a

radius of about 4m [6], which is sufficient to cover typical rooms. To get the true

heartbeat signal, an ECG sensor [25] (shown in Fig. 5.7 (a)) is used to collect the

ground-truth simultaneously with the mmHRV during the experiment.
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Figure 5.7: Experiment setup.

In total, 11 participants (6 males and 5 females) aging from 20 to 60 are

invited to conduct experiments in both LOS and NLOS scenario as shown in

Fig. 5.7 (b) and Fig. 5.7 (c). We conduct the experiments with a variety of set-

tings including different distances, incidental angles, orientations and blockages

between the human subject and the radar.

To further evaluate the performance of the proposed system, we compare

mmHRV with the state-of-the-art HRV estimation technique using Band-Pass-

Filter-Bank (BPFB) [52], where the BPF is used to eliminate respiration interfer-

ence before heartbeat wave estimation.

The HR is then estimated and the heartbeat signal is estimated by using

the narrow BPF whose passing band contains HR. Finally, the zero-crossing tech-

nique is applied to extract the IBI estimations from the heartbeat signal.

5.5.2 Overall Performance

Fig. 5.8 shows the overall IBI estimation accuracy of the proposed mmHRV

and BPFB methods. The experiment consists of 11 participants while 15 dif-
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Figure 5.8: Over all performance of the IBI estimation error.

ferent experiment settings (e.g., different distances, incidental angle, orientation

and blockages) are conducted for each participant. As shown in Fig. 5.8, BPFB

yields about 44ms medium error while the 90-percentile error is about 180ms.

The proposed mmHRV achieves a medium error of about 28ms, with the 80ms of

the 90-percentile error, which outperforms the BPFB about 56%. To thoroughly

evaluate the HRV estimation accuracy, Table. 5.1 and Table. 5.2 show the esti-

mated HRV features in terms of mean IBI, RMSSD, SDRR and pNN50 of 11 par-

ticipants, where the distance between user and device is about 1m. It is shown

that mmHRV can achieve 3.83ms average error of mean IBI, 6.43ms average error

of RMSSD, 6.45ms average error of SDRR and 2.25% average error of the pNN50.

Correspondingly, the average estimation error of BPFB is 15.33ms of mean IBI,

41.94ms of RMSSD, 32.59ms of SDRR and 12.18% of the pNN50 estimations.
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Table 5.1: HRV estimation results in terms of mean IBI, RMSSD, SDRR and

pNN50 for 11 subjects (part-I).

Metrics Methods
User ID

1 2 3 4 5 6

Mean

IBI

Value

(ms)

ECG 899.4 789.9 723.2 854.6 654.5 822.9

mmHRV 906.3 790.4 725.6 848.6 652.4 828.3

BPFB 881.5 784.2 781.5 842.1 676.6 821.7

mmHRV 6.95 0.45 2.47 5.92 2.17 5.4Error

(ms) BPFB 17.87 5.7 58.36 12.44 22.01 1.25

RMSSD

Value

(ms)

ECG 38.59 10.85 37.56 31.49 34.05 35.1

mmHRV 33.52 16.53 39.08 35.26 20.29 39.72

BPFB 59.34 54.26 53.83 52.94 78.57 65.63

mmHRV 5.08 5.68 1.52 3.77 13.76 4.62Error

(ms) BPFB 20.75 43.41 16.27 21.45 44.53 30.52

SDRR

Value

(ms)

ECG 56.28 22.91 50.54 35.35 33.61 48.55

mmHRV 43.22 27.25 53.3 45.88 33.54 48.53

BPFB 71.01 47.28 110.29 58.92 69.68 55.11

mmHRV 13.07 4.34 2.76 10.53 0.07 0.02Error

(ms) BPFB 14.72 24.37 59.74 23.57 36.07 6.55

pnn50

Value

(%)

ECG 11.54 0 9.15 4.32 1.14 6.29

mmHRV 8.46 1.33 7.93 5.76 2.2 6.99

BPFB 19.4 18.54 14.57 20 14.2 22.92

mmHRV 3.08 1.33 1.22 1.44 1.05 0.7Error

(%) BPFB 7.86 18.54 5.42 15.68 13.06 16.62
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Table 5.2: HRV estimation results in terms of mean IBI, RMSSD, SDRR and

pNN50 for 11 subjects (part-II).

Metrics Methods
User ID

7 8 9 10 11

Mean

IBI

Value

(ms)

ECG 645.2 890.1 564.9 728.1 763.8

mmHRV 644.2 888.1 574.2 722.7 762.6

BPFB 651.5 878.4 579.1 719 773.5

mmHRV 0.99 1.97 9.33 5.38 1.2Error

(ms) BPFB 6.31 11.66 14.21 9.16 9.66

RMSSD

Value

(ms)

ECG 16.88 27.52 5.26 23.28 31.16

mmHRV 18.14 26.06 27.8 30.52 34.92

BPFB 95.09 45.56 140.36 59.61 47.92

mmHRV 1.26 1.46 22.53 7.25 3.76Error

(ms) BPFB 78.21 18.04 135.1 36.34 16.76

SDRR

Value

(ms)

ECG 23.24 32.66 12.25 35.83 50.87

mmHRV 25.49 37.43 38.66 37.15 45.51

BPFB 67.61 50.44 118.41 47.92 63.94

mmHRV 2.24 4.78 26.42 1.31 5.36Error

(ms) BPFB 44.37 17.78 106.16 12.09 13.07

pnn50

Value

(%)

ECG 0.55 3.76 0 0.61 4.49

mmHRV 2.17 2.26 4.83 6.71 6.41

BPFB 18.13 12.59 10.24 12.8 12.42

mmHRV 1.62 1.5 4.83 6.09 1.92Error

(%) BPFB 17.58 8.83 10.24 12.19 7.93
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5.5.3 Impact of Distance

In this section, we explore the impact of the distance between the human

subject and the device. As shown in Fig. 5.9 (a), the participants are asked to

face towards the device and sit in four different locations ranging from 50cm to

200cm. The empirical Cumulative Distribution Function (CDF) of the absolute

IBI estimation error is shown in Fig. 5.9 (b).

Fig. 5.9 (b) shows that the medium errors of mmHRV are 22ms, 22ms, 30ms

and 33ms corresponding to the distance of 50cm, 100cm, 150cm and 200cm. It

is clear that the IBI estimation accuracy degrades with the increment of distance,

which is due to the attenuation property of the mmWave signals, as a longer

propagation distance results in a lower SNR.

The medium error of BPFB increase from 40ms to 60ms with the distance

increasing from 50cm to 200cm. In all the four settings, mmHRV shows better

performance than the benchmark BPFB. This is because that mmHRV directly

extracts the heartbeat signal from the composite signal by optimizing the de-

composition, so that the error propagation from breathing as well as random

body motion elimination can be avoided. Besides, the accurate heart rate esti-

mation is necessary for BPFB method, which however is vulnerable to noise and

interference from other signal components.
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Figure 5.9: Experiment setup and the absolute IBI estimation results versus dis-

tance.

5.5.4 Impact of Orientation

Considering the real case that the user may not strictly face towards the

device, this section studies the impact of users’ orientation on IBI estimation ac-

curacy. As shown in Fig. 5.10 (a), four normal orientations including front, back,

left and right are investigated. For all the orientations, the human subject sits

1m away from the device and Fig. 5.10 (b) shows the IBI estimation accuracy in

terms of CDF. As shown in Fig. 5.10 (b), the median absolute IBI estimating error

of mmHRV are 21ms, 22ms, 25ms and 28ms corresponding to the front, right, left

and back settings. BPFB shows larger IBI errors with 40ms, 42ms, 43ms, 55ms

correspondingly. Averagely, mmHRV outperforms BPFB of about 18.883ms in

terms of RMSE. However, for both methods, the “front” setting shows the best

performance while the “back” one yields the largest IBI estimation error. This is

due to the physiological structure of a human body, where the vibration caused
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Figure 5.10: Experiment setup and the absolute IBI estimation results versus

orientation.

by the heartbeat is larger in the front chest than in the back.

5.5.5 Impact of Incident Angle

In this section, we investigate the impact of incident angle denoted by θ in

Fig. 5.11 (a). Specifically, the incident angle θ is set as θ ∈ {0◦,15◦,30◦} while

the distance between the user and device is fixed at 1m. The IBI estimation er-

rors are shown by the CDF in Fig. 5.11 (b). As expected, for both methods, the

performance degrades with the increment of θ. This is because the effective re-

flection area decreases when the human subject deviates from the device from

0◦ to 30◦. Moreover, according to the array signal processing theorem, the beam

width will also increase with the increment of the incident angle, which reduces

the directionality of the receiving signal. As a result, the SNR of the received

signal decreases when the incident angle rises from 0◦ to 30◦, thus resulting in
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Figure 5.11: Experiment setup and the absolute IBI estimation results versus

incident angle.

larger IBI estimation errors. However, mmHRV still outperforms BPFB of an av-

erage about 14.544ms in RMSE, which benefits from its optimization in signal

decomposition for heartbeat signal extraction as introduced in Section. 5.5.3.

5.5.6 LOS vs NLOS

This section evaluates the estimating performance when the user and the

device are blocked by a wood panel as shown in Fig. 5.12 (a). The distance be-

tween the participant and the device is set as 1m while the user is asked to face

towards the device. As shown in Fig. 5.12 (b), the medium estimating error of IBI

of mmHRV increases from 22ms to 24ms if the blockage happens. Correspond-

ingly, the medium error of IBI of BPFB increases from 40ms to 48ms when the

blockage occurs (see Fig. 5.12 (b)). The performance degradation in the blockage

setting is because that the EM signal further attenuates when it penetrates the
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Figure 5.12: Experiment setup and the absolute IBI estimation results versus

blockage.

wood panel, thus rendering the decrements of SNR in the received signal.

5.5.7 Impact of User Heterogeneity

To validate the robustness of mmHRV over different users, Fig. 5.13 sum-

maries the absolute IBI estimation error distribution for all the 11 users of differ-

ent settings (including different distance, incident angles, orientations and block-

age scenario). Fig. 5.13 shows the error distribution of each user, where the first

6 users are males denoted by the blue box and the last 5 users are females de-

noted by the red box. Evidently, mmHRV demonstrates different IBI estimation

errors for different users in which the medium error varies from 13.5ms to 37ms.

This can be caused by several reasons such as different body shapes and heartbeat

strengths over different users. It is shown that the 75-percentile error of all the

uses are smaller than 75ms, which indicates great robustness of mmHRV over
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Figure 5.13: Impact of user heterogeneity.

different subjects.

5.5.8 Multiple-User Case

In this section, we investigate the accuracy of mmHRV in a multiple-user

scenario. As shown in Fig. 5.14 (a) and Fig. 5.14 (b), the participant in the mid-

dle is 1.5 meters away from the device with incident angle 0◦, while the other 2

users in the left and right are 1m away from the device at incidental angle ±30◦.

Fig. 5.14 (c) and Fig. 5.14 (d) depicts the MAE and RMSE of the IBI estimation for

mmHRV. The target detection result is shown in Fig. 5.4 (d). Overall, mmHRV

can work robustly for the 3-user setup, where the MAE of the IBI estimation is

less than 51.83ms for all the 3 locations, as shown in Fig. 5.14 (c). The RMSE of

the IBI estimation is within 70ms for all the locations. We can see that mmHRV

achieve higher accuracy in the middle location than that of either the left or the
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Figure 5.14: Mean and RMSE of the absolute IBI estimation error of multiple

users.

right location. This is because that the participant at the middle location enjoys

the larger reflection area and thus achieves higher SNR in the received signal cor-

respondingly. This result coincides with the experiment result as shown in Sec-

tion. 5.5.3 and Section. 5.5.5. However, the accuracy decreases compared with

the single-user scenario for all the 3 locations. The main reason is that mmHRV

utilizes the digital beamforming, and thus the reflections from other people, al-

though suppressed by digital beamforming, act as extra interference compared

with the single-user case.
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5.6 Summary

In this chapter, we devise mmHRV, a contact-free multi-user HRV estimat-

ing system built upon a commercial mmWave radio. To identify the number of

users and their locations, a target detector is first designed to locate each user

without any prior calibration. The heartbeat wave of each user is then estimated

by optimizing the decomposition of the composite phase information consisting

respiration, heartbeats and random body motion. The exact time of heartbeats is

extracted from the estimated heartbeat wave to further evaluate the IBIs and HRV

metrics. Extensive experiments are conducted, where 11 participants aging from

20 to 60 are asked to sit at different locations (distance, incidental angle, orien-

tation, and NLOS scenario) for HRV evaluation. Experimental results show that

mmHRV achieves a median error of 28 ms for the IBI estimation, outperforming

the state-of-art work.
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Chapter 6: Driver Vital Signs Monitoring

6.1 Introduction

Automobiles have become a daily necessity in current fast-paced world due

to its mobility, convenience and comfortableness. Statistics show that the num-

ber of worldwide automobiles on-the-road has reached 1.2 billion by 2015 [81] .

However, in the meanwhile, road traffic crashes result in the deaths of about 1.35

million people around the world each year and leave between 20 and 50 million

people with non-fatal injuries [61], according to World Health Organization.

To reduce the number of road accidents and enhance the driving safety, au-

tomobile manufacturers and researchers have been working on more and more

Advanced Driver Assistance Systems (ADAS). Among many popular topics in

autonomous driving, driver’s vital sign monitoring is one of the essential com-

ponents. Continuously monitoring driver’s status makes it possible to allow

the ADAS to take control of the automobiles in case of emergency, such as that

the driver encounters a sudden heart attack, stroke or fatigue, which can be

predicted/indicated by using the drive’s Heart Rate Variability (HRV), i.e., the

variation of the inter-beat intervals (IBI). HRV, in combination with Heart Rate

(HR) [28] and Respiration Rate (RR) [91], has been well established as a good
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indicator of cardiac arrhythmia, alcohol usage [4], mental stress [23] and drowsi-

ness [18] and thus predicts the human alertness well.

In this chapter, we propose a novel system, which can estimate driver’s RR,

HR and IBI considering the presence of driver’s motion artifacts using commer-

cial mmWave radio. The rest of the chapter is organized as follows. The system

is overviewed in Section 6.2, followed by vital motion extraction in Section 6.3

and vital signs estimation in Section 6.4. Section 6.5 evaluates the performance

of the system. The whole chapter is summarized in Section 6.6.

6.2 System Overview

The proposed system aims at non-contact driver’s vital sign monitoring in

practical driving scenarios with inevitable random motions by using a single

commodity Frequency-Modulated Continuous Wave (FMCW) radar. The pipeline

of the system is shown in Fig. 6.1, which consists of two main modules: (1) Vital

motion extraction and (2) Vital signs estimation.

In the first stage, the vital motion extraction module extracts the bins con-
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taining vital signals from the channel information. To begin with, conventional

beamforming is performed on the channel information to get the Channel Im-

pulse Response (CIR) at different range-azimuth bins. Then the clutter removal

is performed to subtract the background reflections. However, vital signals are

not directly achievable even after background subtraction because the driver’s

location w.r.t. radar can change over time (e.g., body roaming due to acceleration

or break) during driving. As a result, the vital signals will spread over multiple

range bins. Therefore, a motion compensation algorithm is devised to eliminate

the effect of large body movement. The location change of the driver is first

roughly compensated between consecutive CIRs based on correlation of the CIR

amplitude. Then, the subtle motion within the range bin are estimated and elim-

inated from the CIR phase utilizing smoothing spline. After motion compensa-

tion, the range-azimuth bins containing vital signals will show periodic pattern,

and the CIR of these bins will be exported for further vital signs estimation.

In the second stage, the vital signs estimation module estimates drivers’

RR, HR and heart HRV using the vital signals exported by the previous mod-

ule. To enable HRV analysis, heartbeat wave needs to be reconstructed to get the

exact time of each heartbeat. However, it is non-trivial to extract the heartbeat

signal from the compound vital signals including both respiration and heartbeat

movements. To accurately recover the heartbeat signal, we optimize the decom-

position of vital signals in all candidate bins with multiple band-limited signals

concurrently. And the extracted heartbeat signals in all the candidate bins are

further combined to give an estimate of the heartbeat wave. The IBIs are further
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extracted from the reconstructed heartbeat wave to estimate HRV.

6.3 Vital Motion Extraction

In a real-world setting, extracting vital motions from the RF signal is not

trivial. Due to the presence of various clutters in car (e.g., chairs, metal objects,

ceilings, etc.), it is hard to filter the RF reflections off human body. Moreover,

since body motion will be involved during driving, the periodicity of reflected

signal caused by vital motions can be corrupted, complicating the detection of

vital signals.

6.3.1 Clutter Removal

To locate the range-azimuth bins corresponding to the driver and reduce

the impact of reflections from static objects in the vehicle, the system deploys a

clutter removal algorithm to subtract the CIR from the background. Note that the

reflections from the static object is reasonably assumed to be invariant within a

certain period of time, while the reflections from the driver change over time due

to human motion (including body motion and motion caused by vital signals).

The background profile can be estimated by taking average of the CIR over slow-

time, and the calibrated CIR can be denoted as

ĥ(r,θ,m) = h(r,θ,m)− 1
M

M∑
i=1

h(r,θ,m− i), (6.1)

where r, θ and m denote the range tap, azimuth angle and time index respec-

tively. M is the total number of samples used for clutter removal. Fig. 6.2 shows
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Figure 6.2: Example of clutter removal.

the effect of the background cancellation, where the raw CIR before clutter re-

moval is shown in Fig. 6.2 (a), and the corresponding calibrated CIR after clutter

removal is shown in Fig. 6.2 (b). As can be seen, clutter removal reduces the

background noise significantly.

6.3.2 Motion Compensation

After extracting the dynamic CIR corresponding to the driver, we would

like to get the range-azimuth bins contributed by the vital signals. The vital bins

can be easily identified by checking the periodicity of the phase signal if the hu-

man subject stays stationary as studied in previous works [75]. However, the

assumption of the stationary human subject barely holds in the driving scenario.

To recover the periodic vital signals from the CIR involving human motion, we

design a two-step motion compensation algorithm, where the large body motion

is compensated based on the cross correlation between consecutive CIR sam-
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Figure 6.3: Example of consecutive frame after clutter removal.

ples, and the fine movement revealed in phase information is further removed

by smoothing splines.

6.3.2.1 Large Body Movement Compensation

Note that when there is large body motion, the location of range-azimuth

bins corresponding to human subject will change, as shown in Fig. 6.3, where

the human subject sit at round 0.5m away from device at azimuth angle 0◦. The

human subject sways the body back-and-forth, resulting in the change of reflect-

ing locations. However, the profile of human reflections stays similar, as shown

in Fig. 6.3. Therefore, to remove body movement, the 2-dimensional cross cor-

relation [9] between consecutive CIRs is calculated. Then the CIR at each time

instance is circularly shifted to the point corresponding to the maximum cross

correlation.

Fig. 6.4 shows the amplitude of 1-minute CIR before and after body move-
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ment compensation. For visualization, we plot the CIR at azimuth angle 0◦ over

range [0,0.9]m. It is shown that after the large body movement compensation,

the bins correspond to human subject have been aligned, as shown in the lower

subfigure. The 2-D Constant False Alarm Rate (CFAR) detector will be further

applied over the CIR after aligning the human subject, and the candidate bins

with human subject can be selected as shown in Fig. 6.5.

Although the candidate range-azimuth bins corresponding to human sub-

ject have been aligned and selected in the first step, it is still hard to locate those

bins reflected by chest with periodic vital signals. The reason is that the first step

can only remove the motion artifacts that is larger than the range-azimuth resolu-

tion, however, it cannot deal with the fine movements within the range-azimuth

resolution. Fig. 6.6 (a) shows an example of the unwrapped phase measurement

in solid lines, and slow trend is caused by the fine movements. Therefore, to

recover the periodicity of vital signals, we need to further cancel the impact of
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these fine movements.

6.3.2.2 Fine Movement Cancellation

Compare to the vital signs, the motion artifacts have larger distance change

and lower frequency, thus, the estimation of the phase change caused by mo-

tion can be obtained by the smoothing spline algorithm, as discussed in (4.11).

Fig. 6.6 illustrates the effect of fine movement cancellation, where dashed lines

in Fig. 6.6 (a) show the estimated phase measurement caused by body movement.

Fig. 6.6 (b) shows the phase measurement after we remove the motion artifacts,

where the periodicity caused by vital signals appears. The above fine movement

cancellation is performed over all candidate bins selected by CFAR detector and

the cleaned phase of each candidate bin is saved for further analysis.
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Figure 6.6: Example of fine movement cancellation.

6.3.3 Vital Bin Identification

Note that after motion compensation in Section 6.3.2, the phase information

corresponding to the human chest show periodicity due to the modulation of

both respiration and heartbeat, as shown in Fig. 6.6 (b). To filter out the bins

reflected by other parts of human body, we check the periodicity of the phase

signals over slow time by examine their Autocorrelation Function (ACF).

For the phase measurement contains vital signals, a peak can be observed

at τ∗ in its corresponding ACF, which reveals the time duration of a breathing

cycle. Fig. 6.6 (c) shows an example of the ACF of the phase measurement corre-

sponding to human chest, where the time duration of a breathing cycle is about

3.7s, correspond to 16.1 Respiration Per Minute (RPM). We check the periodic-

ity over all candidate bins corresponding to the human subject, and those bins

whose peak located within the range of normal human RR are identified as vital

bins for further analysis.
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6.4 Vital Signs Estimation

The vital bins identified by the previous module can only reflect the com-

pound distance change caused by respiration and heartbeat. To further estimate

the vital signs including RR, HR, and HRV, we need to reconstruct the distance

change caused by respiration and heartbeat respectively. For simplicity, in the

following analysis, we directly use the analog form of the signal model.

Let y(t) = [s1(t), s2(t), . . . , sB(t)]T denote the vector of the phase signals of all

the B vital bins. Recall that the phase signal after movement cancellation is a

mixture of vital signals, we have

y(t) = sr(t) + sh(t) +n(t). (6.2)

where sr(t) and sh(t) denote the vector of respiration and heartbeat signal respec-

tively, n(t) is the random phase offset introduced by noise, which is independent

with the phase change caused by vital signs. To decompose the phase and get

the estimate of vital signs, we leverage the following properties. First, both sr(t)

and sh(t) are quasi-periodic signals, whose periodicity changes slightly over time.

Second, the periodicity of signals stays the same in different vital bins. Third, due

to the physiological structure of human body, the distance change caused by res-

piration and heartbeat can be different in different parts of human body (i.e., the

distance change in different vital bins can be distinct).

The phase signal, therefore, can be decomposed as an ensemble of band-

limited signals, denoted as {uk(t)}Kk=1, where for each component uk(t), which is

119



defined as uk(t) = [u{k,1}(t),u{k,2}(t), . . . ,u{k,B}(t)]T , the decomposed signals w.r.t. all

vital bins should be compact around the same center frequency ωk. The decom-

position is modeled as [72]

min
uk,b∈U ,ωk∈Ω

α
K∑
k=1

B∑
b=1

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk,b(t)]exp(−jωkt)

∥∥∥∥∥2

2

+
B∑
b=1

∥∥∥∥∥∥∥yb(t)−
K∑
k=1

uk,b(t)

∥∥∥∥∥∥∥
2

2

,

(6.3)

where U = {u1,1,u1,2, . . . ,u1,B, . . . ,uK,B} and Ω = {ω1, . . . ,ωK } denote the set for all

components and their center frequencies, respectively. The first term in (6.3)

represents the bandwidth constraint, which is measured by the sum of the L2

norm of the gradient of the analytic signal corresponding to each component. The

second term is the fidelity constraint, which is evaluated by the quadratic penalty

w.r.t. reconstruction. α is a parameter for balancing the bandwidth constraint

and data fidelity. The optimization problem in (6.3) can be solved by alternatively

updating U and Ω until convergence.

6.4.1 Minimization w.r.t. uk,b

To update the k-th component for vital bin b, the subproblem can be written

as

uk,b(t) = arg min
uk,b(t)

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk,b(t)]exp(−jωkt)

∥∥∥∥∥2

2

+

∥∥∥∥∥∥∥yb(t)−
K∑
i=1

ui,b(t)

∥∥∥∥∥∥∥
2

2

.

(6.4)
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By using the Parseval theorem, the problem is equivalent to

uk,b(ω) = arg min
uk,b(ω)

α
∥∥∥jω[(1 + sgn(ω+ωk))uk,b(ω)]

∥∥∥2
2

+

∥∥∥∥∥∥∥†b(ω)−
K∑
i=1

ui,b(ω)

∥∥∥∥∥∥∥
2

2

,

(6.5)

where uk,b(ω) and †b(ω) are the Fourier transfer of uk,b(t) and yb(t) respectively.

Now, we take integrals over frequencies and we have

uk,b(ω) = arg min
uk,b(ω)

α

∫ ∞
−∞

∥∥∥jω[(1 + sgn(ω+ωk))uk,b(ω)]
∥∥∥2

2

+

∥∥∥∥∥∥∥†b(ω)−
K∑
i=1

ui,b(ω)

∥∥∥∥∥∥∥
2

2

dω.

(6.6)

After performing a change of variables ω ← ω −ωk in the first term, and using

the Hermition symmetry of the real signals in the spectrum for the second term,

the above problem can be rewritten as

uk,b(ω) = arg min
uk,b(ω)

∫ ∞
0

4α(ω −ωk)2|uk,b(ω)|2 + 2|†b(ω)−
K∑
i=1

ui,b(ω)|2dω. (6.7)

The updated solution can be expressed as

uk,b(ω) =
†b(ω)−

∑
i,i,kui,b(ω)

1 + 2α(ω −ωk)2 . (6.8)

6.4.2 Minimization w.r.t. ωk

The center frequencies ωk only appears in the bandwidth constraint and

thus the updating function can be written as

ωk = argmin
ωk

B∑
b=1

∥∥∥∥∥∂t [(δ(t) +
j

πt
) ∗uk,b(t)]exp(−jωkt)

∥∥∥∥∥2

2
. (6.9)
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(a) Decomposition of a typical phase signal in

time domain.
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Figure 6.7: Example of phase decomposition of 3 vital bins.

As before, we find the optimum in Fourier domain, and we have

ωk = argmin
ωk

B∑
b=1

∫ ∞
0

(ω −ωk)2|uk,b(ω)|2dω. (6.10)

The minimizer of the above quadratic problem is

ωk =

∑
b

∫∞
0
ω|uk,b(ω)|2dω∑

b

∫∞
0
|uk,b(ω)|2dω

. (6.11)

Fig. 6.7 shows an example of vital signals decomposition, where the time

and frequency domain of the original phase as well as the decomposition com-

ponents are shown in Fig. 6.7 (a) and Fig. 6.7 (b) respectively. The information

of 3 different vital bins are distinguished by the color of lines, and it is clear to

see that although the distance change of different vital bins are distinct, as shown

in Fig. 6.7 (a), the periodicity of the signal of each component stays the same, as

shown in Fig. 6.7 (b). In other words, components corresponding to vital signals

are perfectly aligned over all vital bins, e.g., the first component represents the

distinct displacement cause by respiration over different vital bins.
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Figure 6.8: Example of estimated result v.s. ground truth.

6.4.3 Vital Signals Reconstruction

To further reduce the noise impact, we reconstruct the vital signals by com-

bining the signals of all vital bins using empirical mean, i.e.,sr(t) = 1
B

∑
bui,b(t)

and sh(t) = 1
B

∑
buj,b(t), where i-th and j-th components correspond to respira-

tion signal and heartbeat signal respectively. The RR is estimated by finding the

first peak of the ACF of the estimated respiration signal, as shown in Fig. 6.6 (c).

Besides, the FFT is further performed on the estimated heartbeat signal to get the

estimation of HR. The exact time of each heartbeat can be further extracted from

the reconstructed heartbeat wave to estimate IBI.

Fig. 6.8 shows the estimated vital signs versus their ground-truths of a 2-

minute dataset, where a 1-minute window is employed for the time-frequency

domain transform (i.e., ACF and FFT). The estimated RR and HR are shown in

solid lines in Fig. 6.8 (a), which match with the ground-truth, shown as dashed

lines in Fig. 6.8 (a). Fig. 6.8 (b) shows a segment of estimated heartbeat wave, and

the ground-truth of the exact time of each heartbeat is marked as vertical dashed
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ECG sensorTI IWR1843

(a) Hardware.

(b) Device mount on windshield. (c) Device under steering wheel.

Figure 6.9: Experiment setup.

lines. The estimated IBIs of the whole data and their corresponding ground-truth

are shown in Fig. 6.8 (c). Evidently, the proposed system achieves high accuracy

in vital signs estimation, and the Root-Mean-Squared-Error (RMSE) of IBI esti-

mation in Fig. 6.8 (c) is 40.77ms, corresponding to the 96% relative accuracy.

6.5 Experiment Evaluation

In this section, extensive experiments are performed to evaluate the perfor-

mance of the proposed system. We compare the performance of the proposed

system with the state-of-art work under different experimental settings.
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Figure 6.10: Experiment path.

6.5.1 Methodology

We conduct experiments using a Commodity Off-The-Shelf (COTS) mmWave

radar, IWR1843BOOST [26], as shown in Fig. 6.9 (a), where the 2 Tx antennas and

4 Rx antennas are configured in TDM-MIMO mode [46]. The device can achieve

a theoretical azimuth resolution of 15◦, and the field-of-view (FoV) is 100◦ in

horizontal plane, which is large enough to cover the driver. The ground truth of

heartbeat is captured by a commercial ECG sensor [25], as shown in Fig. 6.9 (a),

and the ground truth of breathing is measured by a respiration belt [19].

We recruit 4 volunteers (2 males and 2 females) to help on the data collec-

tion including 2 different device locations as shown in Fig. 6.9 (b) and Fig. 6.9 (c).

The driving route is a cycle of 50.7 miles including local routes and highway,

where the road conditions can be referred to Maryland’s GIS DataSet [42]. Dur-

ing the data collection, the driver is driving following their own habits with no

further constraints, and a copilot is responsible for collecting data.

To further evaluate the performance of the proposed system, we compare

it with the state-of-art work, V2iFi [94], which also estimates driver’s vital signs
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using mmWave FMCW radar. With assumption that the distance change caused

by vital signals are identical in different vital bins, V2iFi estimates the respira-

tion and heartbeat signal by Multi-Sequence Variational Mode Decomposition

(MS-VMD). Note that V2iFi cannot estimate vital signs when drivers have body

motion. For fair comparison, motion compensation proposed in Section 6.3.2 is

also applied to V2iFi to remove the motion artifacts before estimating the vital

signals.

6.5.2 Overall Performance

Fig. 6.11 depicts the overall performance of the proposed system and V2iFi.

The experiments consist of road tests with different pavement conditions, device

locations, as well as the controlled experiments with different motion types, in-

cluding stationary, head motion, hand motion and back-and-forth torso motion

for 4 different users. Fig. 6.11 (a) plots the empirical cumulative CDF of absolute

RR estimation error, where the 90-percentile error for the proposed system and

V2iFi are 0.64 RPM and 0.86 RPM respectively. The performance improvement

is more significant for HR estimation, where the proposed system achieves a me-

dian error of 0.82 BPM, and the median error of V2iFi is 5.12 BPM, as shown

in Fig. 6.11 (b). Fig. 6.11 (c) shows the performance of IBI estimation for the

two systems, where V2iFi yields about 84ms medium error, while the proposed

system achieves a medium error of 46ms, outperforming V2iFi about 45.2%.
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Figure 6.11: Comparison of vital sign estimation performance between proposed

method and V2iFi.

6.5.3 Impact of Road Condition

In this section, we investigate the effect of road condition on the estima-

tion accuracy. Note that the road/pavement condition is assessed by several fac-

tors including rutting, friction, structural cracking density, etc. The better the

pavement condition is, the smoother the road is, and less body motion induced

by uneven road will be involved. The test route shown in Fig. 6.10 roughly in-

cludes three different pavement conditions, i.e., Very Good, Good and Fair, and

the pavement detail can be referred to Maryland’s GIS DataSet [42]. During data

collection, the copilot saves data every 2 minutes and records the corresponding

pavement condition at the same time.

As expected, the performance degrades with the deterioration of the pave-

ment condition, as shown in Fig. 6.12. The medium error of RR estimation of

the proposed system is 0.18RPM when the pavement condition is Very Good,

and it increases to 0.19RPM when the pavement condition is Fair, as shown in

Fig. 6.12 (a). The degradation is more severe in terms of HR estimation, where
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Figure 6.12: Vital sign estimation performance versus pavement condition.

the median error increases from 0.45BPM to 1.64BPM when the pavement con-

dition deteriorates from Very Good to Fair, as shown in Fig. 6.12 (b). Fig. 6.12 (c)

shows the performance of IBI estimation, where the system achieves a median er-

ror of 32ms when the pavement condition is Very Good, and yields about 50ms of

median error when the pavement condition is Fair. The reason for the degrada-

tion of the performance with poorer road condition is that more motion artifacts

cause by the uneven road will be involved with worse pavement condition, which

means a lower SINR of vital signals. Since the distance change caused by respi-

ration is larger than heartbeat, which means a higher SINR of the RR estimation.

Therefore, we observe a slighter degradation in RR estimation compared with HR

and IBI estimations.

It is obvious that both algorithms achieve similar performance in RR esti-

mation, but the proposed system outperforms V2iFi for all 3 road conditions in

terms of HR and IBI estimation. In specific, for HR estimation, V2iFi yields a

median error of 2.34BPM for the Very Good pavement condition, and the perfor-

mance gap is more severe with the deterioration of road condition, as shown

in Fig. 6.12 (b), where the median error for the Good pavement condition is
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4.65BPM, which is 4 times worse than the proposed method. As for IBI estima-

tion, V2iFi yields a median error of 61ms with the Very Good pavement condition,

which is about 90.6% worse than the proposed method. The performance gap

also becomes larger with the degeneration of the pavement condition, where for

the Fair condition, the median error of V2iFi is 120ms, 1.4 times larger compared

with the proposed system. The main reason for the performance gap between

V2iFi and the proposed method is that V2iFi assumes the same distance change

of vital signals in different vital bins, which is hard to meet when the SNR of the

signal is small. However, the proposed system only assumes the same periodic-

ity of vital signs in different vital bins when reconstructing vital signals, and the

distance change in different vital bins are jointly optimized, which is more robust

to the noise.

6.5.4 Impact of Device Location

In this study, we investigate the impact of device location on vital signs

estimation. The radar is placed at the top of windshield, as shown in Fig. 6.9 (b),

and under the steering wheel, as shown in Fig. 6.9 (c). Fig. 6.13 plots the CDF of

the absolute error of RR, HR and IBI estimations, where the red lines corresponds

to the setting when the device is placed under the steering wheel, denoting as

“down” setting, and the blue lines corresponds to the setting when the device is

mounted on the top of the windshield, denoting as “up” setting.

It is shown that the “down” setting achieves better performance for all es-
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Figure 6.13: Vital sign estimation performance versus device location.

timations. In specific, for the proposed system, the median error for RR, HR and

IBI estimation are 0.2RPM, 0.65BPM and 38ms respectively for the “down” set-

ting, however, it increases to 0.28RPM, 1.91BPM and 56ms for the “up” setting,

corresponding to 40%, 193.85% and 47.37% performance degradation, respec-

tively. We observe the similar phenomenon in V2iFi, where the median error for

all the 3 metrics increases when the device is place as the ”up” setting, as shown

in dashed lines in Fig. 6.13. The reason is that when the device is mounted on

the windshield, the vital bins mainly correspond to the chest, whereas, for the

“down” setting, the vital bins mainly correspond to the lower chest and the ab-

domen. Note that for the same scenario (e.g., car decelerates due to brake), sev-

erer motion will be involved in the upper chest than the abdomen, therefore, the

SNR of vital signals for the “down” setting is larger than the “up” setting. How-

ever, comparing to the proposed system, V2iFi yields larger estimation error for

all the 3 metrics, which is resulted by its less robustness to noise as discussed in

Section 6.5.3.
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Figure 6.14: Vital sign estimation performance versus motion type.

6.5.5 Impact of Motion Type

As driving involves different kinds of motion of head, hand and body such

as looking at the side mirror, or hand motion associated with the steering opera-

tion, etc., to better understand the impact of different motion types, we conduct

controlled experiment and analyze their corresponding impact in this section, as

shown in Fig. 6.14. During the experiment, drivers are asked to perform spe-

cific type of motion in a parked car, including sitting stationary, head motion to

check the surroundings, hand motion to operate steering wheel and randomly

sway their body back-and-forth to emulate the body motion caused by accelera-

tion and deceleration.

Fig. 6.14 (a) shows the CDF of RR estimation error with different motion

types, where we can see that the median estimation error when driver performs

head motion is nearly the same as the stationary case. The performance slightly

degrades when the driver performs hand motion, where the median error in-

crease from 0.11RPM to 0.12RPM compare to the stationary setting. However,

for the large back-and-forth motion, we observe a severe performance degrada-
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tion, and its median error of RR estimation is 0.19RPM, 72.73% worse than the

stationary setting. Similar performance degradation can be observed in terms of

HR and IBI estimation.

Fig. 6.14 (b) shows that the median error of HR estimation increases from

0.35BPM corresponding to the stationary setting to 0.68BPM and 0.75BPM when

the driver performs hand and back-and-forth motion, respectively. As for IBI

estimation, the median error when the driver performs sitting stationary, head

motion, hand motion and random back-and-forth motion are 37ms, 41ms, 45ms

and 68ms respectively, as shown in Fig. 6.14 (c).

We also plot the estimation performance of V2iFi in dashed lines in Fig. 6.14,

where the similar performance degradation can be observed. However, we can

see that V2iFi is more vulnerable to motion artifacts, and the performance degra-

dation of hand and back-and-forth motion is more severe compared to the pro-

posed system. In specific, we can see that the median error of HR estimation

for the back-and-forth setting is larger than 10BPM, which is almost useless for

driver’s HR estimation.

6.5.6 Impact of User Heterogeneity

In this part, we study the impact of the user heterogeneity on the perfor-

mance. Fig. 6.15 summaries the absolute IBI estimation error of 4 drivers using

the data of all the settings above. Evidently, the proposed method demonstrates

different IBI estimation errors for different users, where the medium error varies
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Figure 6.15: Impact of user heterogeneity.

from 41ms to 62ms, as shown in blue and red boxes in Fig. 6.15. The difference

in error distribution can be caused by various factors, such as different driving

habits and heartbeat strength over individuals. Besides, the performance of V2iFi

is shown in cyan and magenta boxes for comparison. It is obvious that the pro-

posed method outperforms V2iFi for all the 4 users, which is benefited from its

dedicate design to resist motion artifacts.

6.6 Summary

In this chapter, we propose a novel system that can accurately detect driver’s

vital signs in the presence of practical driving motions using the reflections of RF

signals off the human subject only. To locate the reflections from the driver, the

system first performs conventional beamforming to get the CIR with different

range-azimuth bins, followed by a clutter removal module to remove the reflec-

tion from the background. Then the 2-dimensional correlation between differ-

ent CIR samples have been used to eliminate large displacement caused by body
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roaming. Finer motion artifacts are further removed by the smoothing spline,

which can accurate estimate motion artifacts without dedicated choose of hyper-

parameter as in polynomial fitting. The displacement caused by respiration and

heartbeat are then estimated by jointly optimizing the decomposition of vital

signals in all vital bins, and the RR, HR and IBI can be extracted from the re-

constructed respiration and heartbeat wave. We prototype our system using a

commercial millimeter-wave radio, and conduct experiments to evaluate the per-

formance. Experimental results show that the proposed system can estimate vi-

tal signs accurately with driving motion artifacts, outperforming the state-of-art

works.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

Human-centric sensing via wireless radio frequency has attracted an in-

creasing interest for IoT applications. Since human activities can affect the prop-

agation of wireless signals, wireless sensing has been proposed as the technique

to reveal information of human subjects from ambient radio signals. In this dis-

sertation, we demonstrate the feasibility as well as the capability of wireless sens-

ing in vital signs monitoring by proposing one respiration tracking system using

WiFi and three heart rate monitoring systems using mmWave radio. The system

performance has been evaluated by extensive experiments.

In Chapter 3, we propose a system that is capable of continuously tracking

the breathing rates of multiple users using the CSI of a single pair of commercial

WiFi device. By leveraging both spectrum and temporal diversities, the system

can match the estimated breathing rates in different time instances to different

users. The breathing rate traces can be extracted even if some of them merge

together for a short time period. Moreover, by utilizing the estimated breathing

rate traces, the system can achieve some interesting applications such as crowd

number estimation for smart home scenario. We prototype the proposed system
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on COTS WiFi devices and evaluate it in both indoor and in-car environments,

in which the results demonstrate promising performance.

In Chapter 4, we propose a multi-person respiration rate as well as heart

rate monitoring system, ViMo, with 60GHz WiFi. By fully investigate both am-

plitude and phase information of the CIR measurement, the system can identify

static objects, stationary human subjects and human in motion without any cali-

bration. To have a robust estimate of heart rate for the stationary human subjects,

the smoothing spline is applied to eliminate the respiration interference. We

evaluate the performance of ViMo by various settings, including NLOS and mo-

tion artifacts, the most challenging scenarios for wireless vital signs monitoring.

Experimental results show that ViMo monitor user’s vital signs accurately, with a

median error of 0.19RPM and 0.92BPM, respectively, for RR and HR estimation.

To get finer information of heartbeat, we propose a multi-user heart rate

variability monitoring system, mmHRV, with a commercial FMCW mmWave ra-

dio in Chapter 5. We first develop a calibration-free target detector to identify

the number of users and their locations. Then, the heartbeat signal of each user

is estimated by decomposing the phase measurement modulated by the chest

movement. The exact time of each heartbeat is estimated by finding the peak

locations of the estimated heartbeat signal to further evaluate IBIs and HRV met-

rics. Extensive experiments were conducted, where 11 participants aging from

20 to 60 help to collect data under different settings including the NLOS scenario.

Experimental results showed that mmHRV achieves a median error of 28ms for

the IBI estimation, outperforming the state-of-art work.
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In Chapter 6, we propose a driver vital sign monitoring system built upon a

commercial mmWave radar. To enable driver’s vital sign monitoring, we devise a

two-step motion compensation module to eliminate the motion artifacts during

driving. Then the respiration and heartbeat wave are reconstructed by jointly

optimizing the decomposition over all range-azimuth bins containing vital sig-

nals. We evaluate the system performance in real driving environment, where

the impact of pavement condition, device location as well as motion type are ex-

plored in the experiment. Experimental results illustrate promising performance

of the proposed system, where the median error of RR, HR and IBI are 0.16RPM,

0.82BPM and 46ms, respectively.

7.2 Future Work

The development of IoT witnesses a proliferation of IoT devices. In the

meanwhile, wireless sensing enables these wireless devices another functionality

besides communication, that is to sense and understand the environment. In

this dissertation, we have demonstrated the idea and the feasibility of wireless

sensing for vital signs monitoring. However, there are several open problems

and challenges to be explored and investigated to make the proposed systems

more versatile and useful in real life scenarios.

Firstly, the proposed respiration tracking system captures the respiration

rate traces from the spectrogram, where the frequency resolution depends on

the window length of STFT. Therefore, if we want to differentiate two breathing
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rate traces with similar frequency, longer window should be applied, which will

cause extra delay. In the future, we would like to investigate the possibility of

breathing signals separation in the time domain using the statistical difference

between different breathing sources, which may enable the respiration sources

separation with a shorter delay.

Secondly, in the second part of the thesis, three heartbeat monitoring sys-

tems have been designed using the mmWave radio. These systems either can

capture the multi-person heartbeat when they are in stationary, as illustrated in

Chapter 4 and Chapter 5, or capture the heartbeat signal for a single person with

motion artifacts, as illustrated in Chapter 6. However, the scenario correspond-

ing to multi-person with motion artifacts may happen from time to time. To

make the proposed systems more useful in real life scenarios, we need to design

the system that enables multi-person heartbeat detection with motion artifacts.

Lastly, the proposed vital signs monitoring system can be augmented with

data mining module for human health status evaluation. Some medical research

has validated that the human status such as emotion and mental stress can in-

fluence the vital signs. It is promising that some interesting applications can be

achieved by enabling the human status prediction, such as the emotion recogni-

tion for the smart car to prevent the road accidents caused by road rage.
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