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The dramatic increase of service quality and channel capacity in wireless net-

works is severely limited by the scarcity of energy and bandwidth, which are the

two fundamental resources for communications. New communications and network-

ing paradigms such as cooperative communication and cognitive radio networks

emerged in recent years that can intelligently and efficiently utilize these scarce re-

sources. With the development of these new techniques, how to design efficient spec-

trum allocation and sharing schemes becomes very important, due to the challenges

brought by the new techniques. In this dissertation we have investigated several

critical issues in spectrum allocation and sharing and address these challenges.

Due to limited network resources in a multiuser radio environment, a partic-

ular user may try to exploit the resources for self-enrichment, which in turn may



prompt other users to behave the same way. In addition, cognitive users are able to

make intelligent decisions on spectrum usage and communication parameters based

on the sensed spectrum dynamics and other users’ decisions. Thus, it is important

to analyze the intelligent behavior and complicated interactions of cognitive users

via game-theoretic approaches. Moreover, the radio environment is highly dynamic,

subject to shadowing/fading, user mobility in space/frequency domains, traffic vari-

ations, and etc. Such dynamics brings a lot of overhead when users try to optimize

system performance through information exchange in real-time. Hence, statistical

modeling of spectrum variations becomes essential in order to achieve near-optimal

solutions on average.

In this dissertation, we first study a stochastic modeling approach for dynamic

spectrum access. Since the radio spectrum environment is highly dynamic, we model

the traffic variations in dynamic spectrum access using continuous-time Markov

chains that characterizes future traffic patterns, and optimize access probabilities

to reduce performance degradation due to co-channel interference. Second, we pro-

pose an evolutionary game framework for cooperative spectrum sensing with selfish

users, and develop the optimal collaboration strategy that has better performance

than fully cooperating strategy. Further, we study user cooperation enforcement

for cooperative networks with selfish users. We model the optimal relay selection

and power control problem as a Stackelberg game, and consider the joint benefits

of source nodes as buyers and relay nodes as sellers. The proposed scheme achieves

the same performance compared to traditional centralized optimization while reduc-

ing the signaling overhead. Finally, we investigate possible attacks on cooperative



spectrum sensing under the evolutionary sensing game framework, and analyze their

damage both theoretically and by simulations.
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Chapter 1

Introduction

1.1 Motivation

The dramatic increase of service quality and channel capacity in wireless net-

works is severely limited by the scarcity of energy and bandwidth, which are the

two fundamental resources for communications. Therefore, researchers are currently

focusing their attention on new communications and networking paradigms that can

intelligently and efficiently utilize these scarce resources. For instance, cooperative

communications [LTW04] can take advantage of the broadcasting nature of wire-

less networks and exploit the inherent spatial and multiuser diversities, where relay

nodes act as a virtual antenna array to help source nodes forward information to

the destination nodes to achieve higher data throughput and more reliable transmis-

sion. Moreover, with the development of cognitive radio technology [III00], future

wireless communication devices are envisioned to be able to sense and analyze their

surrounding environment, learn from the environment variations, and adapt their
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operating parameters accordingly in order for a better performance and more ef-

ficient spectrum utilization. For instance, when cognitive network users share a

licensed spectrum, they can detect spectrum white space, select the best frequency

bands, coordinate spectrum access with other users and vacate the frequency when

a primary user appears.

In traditional military and emergency applications, users in a wireless net-

work usually belong to the same authority and have the same objective. However,

in emerging networks, such as cooperative and cognitive communication networks

envisioned in civilian applications, different network users typically belong to dif-

ferent operators and may pursue different goals. Fully cooperative behaviors such

as forwarding data for other users or contributing to a common task uncondition-

ally cannot be pre-assumed. Due to limited network resources in a multiuser radio

environment, a particular user may try to exploit the resources for self-enrichment,

which in turn may prompt other users to behave the same way. Moreover, the ra-

dio environment is highly dynamic, subject to shadowing/fading, user mobility in

space/frequency domains, traffic variations, and etc. Such dynamics brings a lot

of overhead when users try to optimize system performance through information

exchange in real-time.

Since these emerging communication paradigms are usually deployed in a

highly dynamic spectrum environment where network users tend to be selfish, before

they can be successfully exploited in order to achieve efficient spectrum utilization,

the following two critical issues must be resolved first: user cooperation and dy-

namic spectrum sharing. Since selfish network users only aim at maximizing their
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own benefits, without a properly designed cooperation enforcement mechanism, they

may be unwilling to help other users at the expense of their own resources, such

as forward data for other users or spend their own time detecting spectrum white

space. Furthermore, dynamics caused by different user activities, e.g., primary users

re-occupying/vacating their licensed bands and secondary users starting/ceasing a

communication session, pose even greater challenges for the design of dynamic spec-

trum sharing schemes.

In recent years, efficient spectrum allocation and sharing in cooperative and

cognitive communication networks has drawn extensive attentions [CZ05, ZC05,

EPT07, JL07, JL06, RYM05, SA06]. The performance in cooperative communica-

tion networks depends on careful resource allocations such as relay placement, re-

lay selection, bandwidth allocation, and transmission power control. Transmission

power allocation is optimized to minimize the outage probability and maximize

network lifetime [HA03, SSL08]. Relay selection and assignment schemes are pro-

posed to fully utilize the cooperative diversity, minimize the outage probability,

extend coverage area, and maximize throughput [LBG+04,BLR05, SHL06]. In ad-

dition, there have been several previous efforts addressing how to efficiently and

fairly share the spectrum resources in cognitive communication networks, on a ne-

gotiation/pricing basis [CZ05,ZC05,EPT07,JL07,JL06,RYM05] or an opportunistic

basis [XCMS06,KC06]. In negotiation/pricing-based spectrum allocation, the un-

used spectrum resources from legacy spectrum holders (primary users) can be shared

among unlicensed users through auction-based pricing approaches. In opportunis-

tic spectrum sharing, unlicensed/secondary users can access the licensed spectrum

3



when the spectrum is sensed as idle. Furthermore, in order to protect primary users

from the interference due to secondary spectrum usage, various spectrum detection

schemes have been proposed to improve the detection performance and minimize

the conflict/interference with the primary user. Recent study has shown that co-

operative spectrum sensing with multiple secondary users can further improve the

efficiency of primary user detection.

Although the existing spectrum allocation and sharing schemes can enhance

system performance in cooperative and cognitive communication networks, there

are still some fundamental issues that require further treatment.

First, the radio spectrum environment is constantly changing. In conventional

power control to manage mutual interference for a fixed number of secondary users,

after each change of the number of contending secondary users, the network needs

to re-optimize the power allocation for all users completely. This results in high

complexity and much overhead. If a primary user appears in some specific portion

of the spectrum, secondary users in that band also need to adapt their transmission

parameters to avoid interfering with the primary user. Therefore, efficient dynamic

spectrum sharing scheme must include a traffic model based on traffic statistics to

predict the future traffic patterns in the shared spectrum.

Second, in order to improve the detection performance of a primary user,

most cooperative spectrum sensing schemes assume a fully cooperative scenario,

meaning all secondary user will voluntarily fuse their sensing outcomes to a common

controller such as a secondary base station. But this assumption does not hold in a

decentralized network. Moreover, due to users’ specific channel conditions, it is even

4



not optimal to have all secondary users cooperate in every sensing effort. In addition,

sensing takes energy/time which may be diverted to useful data transmission. In

self-organizing networks where secondary users exchange sensory data to make a

final decision, selfish users tend to take advantage of the others so as to reserve

more time for their own data transmission. Therefore, how to collaborate with

selfish users in cooperative spectrum sensing is another very important issue.

Third, most existing works on spectrum sharing in cooperative communication

networks mainly focus on resource allocation by means of a centralized fashion.

Such schemes require that complete and precise channel state information (CSI) be

available in order to optimize the system performance, which are generally neither

scalable nor robust to channel estimation errors. Moreover, users in decentralized

self-organizing cooperative communication networks belong to different authorities.

Therefore, a mechanism of reimbursement to relay nodes is needed such that relay

nodes can earn benefits from spending their own transmission power in helping the

source node forward information.

1.2 Contributions and Thesis Organization

This dissertation has investigated how to efficiently utilize the limited network

resources in cognitive cooperative networks with selfish users under a time-varying

spectrum radio environment. Specifically, two important issues have been addressed:

1) how to collaborate with selfish users in forwarding information and cooperative

spectrum sensing, and 2) how to design dynamic spectrum access strategy by uti-

5



lizing the traffic statistics to predict future traffic patterns and reduce information

exchange. The contributions lie in the following three aspects.

Evolution of behavior dynamics in cooperative spectrum sensing: In

order to study the time evolution of selfish users’ cooperation behavior, we have

proposed an evolutionary cooperative sensing game, derived users’ behavior dynam-

ics, and proved their convergence to the evolutionarily stable strategy (ESS). The

proposed approach not only reveals the underlying behavior dynamics involved in

establishing robust equilibrium, but also helps to develop a distributed learning

algorithm that guides secondary users to approach the ESS only with their own

throughput observation. More important, it opens a new avenue for future research

on studying behavior dynamics in cognitive radio networks using evolutionary game

theory.

Statistical modelling for dynamic spectrum access: Another contribu-

tion of this dissertation is the traffic modelling of primary and secondary users in

cognitive radio networks. Specifically, we have modelled the traffic variations of the

radio environment as continuous-time Markov chains (CTMC). Since the model can

characterize the traffic dynamics of different users occupying the licensed spectrum,

the proposed approach provides a means for predicting future traffic patterns in

the shared spectrum. As mutual interference will impair spectrum efficiency when

multiple secondary users transmit in the same frequency, in order to compensate

throughput degradation due to mutual interference, we have further introduced op-

timal access probabilities for secondary users so that the chance of spectrum sharing

is controlled and spectrum resources are shared in a more efficient way without con-

6



flicting with primary users.

User cooperation enforcement in cooperative networks: In this dis-

sertation, we have also proposed a two-level Stackelberg game which considers the

joint benefits of source nodes as buyers and relay nodes as sellers. With the pro-

posed approach, not only can source nodes and relays at relatively better locations

and buy an optimal amount of power, but also competing relays can maximize their

profits by asking optimal prices. Furthermore, we have designed a distributed price

updating function by which relay nodes can iteratively approach their optimal prices

and system performance is gradually optimized. Compared to most existing works,

the proposed approach does not require CSI, and therefore greatly reduces overhead

and signaling. Moreover, the distributed nature of the proposed scheme makes it a

building block in large-scale wireless ad hoc networks for the cooperation simulation

among nodes.

The reminder of this dissertation is organized as follows. Chapter 2 introduces

the related works, game-theoretic models, and basic concepts of Markov chain for

spectrum allocation and sharing in cognitive cooperative networks. In Chapter 3,

a primary-prioritized Markov approach is described for dynamic spectrum access

in licensed bands [WJLC09]. In Chapter 4, an evolutionary game framework for

cooperative spectrum sensing with selfish users is discussed [WLC09]. The user

collaboration enforcement in cooperative wireless networks using Stackelberg game

[WHL09] is presented in Chapter 5. Malicious attacks on cooperative spectrum

sensing are studied in Chapter 6. Finally, Chapter 7 concludes this dissertation and

discusses the future work.
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Chapter 2

Background

2.1 Related Works

2.1.1 Spectrum Sharing and Management in Cognitive Ra-

dios

The usage of radio spectrum resources and the regulation of radio emissions are

coordinated by national regulatory bodies like the Federal Communications Com-

mission (FCC). The FCC assigns spectrum to license holders or services on a long-

term basis for large geographical regions; however, a large portion of the assigned

spectrum remains unutilized. The inefficient usage of the limited spectrum resources

necessitates the development of dynamic spectrum access techniques. Recently, the

FCC began considering more flexible and comprehensive uses of the available spec-

trum [FCC02, FCC03b], through the use of cognitive radio technology [III00]. By

exploiting the spectrum in an opportunistic fashion, dynamic spectrum access en-
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ables secondary users to sense which portions of the spectrum are available, select

the best channel, coordinate access to spectrum channels with other users, and

vacate the channel when a primary user appears.

In order to fully utilize the limited spectrum resources, how to efficiently and

fairly share the spectrum among secondary users becomes an important issue, es-

pecially when multiple dissimilar secondary users coexist in the same portion of the

spectrum band. There have been several previous efforts addressing this issue on a

negotiated/pricing basis [CZ05,ZC05,EPT07,JL07,JL06,RYM05] or an opportunis-

tic basis [XCMS06,KC06]. A local bargaining mechanism was proposed in [CZ05] to

distributively optimize the efficiency of spectrum allocation and maintain bargaining

fairness among secondary users. In [HBH06], auction mechanisms were proposed for

sharing spectrum among multiple users such that the interference was controlled be-

low a certain level. Rule-based approaches were proposed in [ZC05] that regulated

users’ spectrum access in order to trade-off fairness and utilization with commu-

nication costs and algorithmic complexity. In [EPT07], the authors proposed a

repeated game approach, in which the spectrum sharing strategy could be enforced

using the Nash Equilibrium of dynamic games. In [JL07, JL06], belief-assisted dy-

namic pricing was used to optimize the overall spectrum efficiency while basing the

participating incentives of the selfish users on double auction rules. A centralized

spectrum server was considered in [RYM05] to coordinate the transmissions of a

group of wireless links sharing a common spectrum. Recently, attention is being

drawn to opportunistic spectrum sharing. In [XCMS06], a distributed random ac-

cess protocol was proposed to achieve airtime fairness between dissimilar secondary

9



users in open spectrum wireless networks without considering primary users’ activ-

ities. The work in [KC06] examined the impact of secondary user access patterns

on blocking probability and achievable improvement in spectrum utilization with

statistical multiplexing, and proposed a feasible spectrum sharing scheme.

2.1.2 Cooperative Spectrum Sensing for Primary Detection

In order to identify the spectrum hole when the primary is inactive, an impor-

tant requirement of secondary users is the capability to sense their surrounding radio

spectrum environment. Further, since primary users should be carefully protected

from interference due to secondary users’ operation, secondary users also need to

sense the licensed spectrum before each transmission and can only transmit when the

spectrum is idle. One efficient way of spectrum detection is the primary transmitter

detection based on local observations of secondary users. If the information of the

primary user signal is known to secondary users, they can use matched filter detec-

tion to maximize the received signal-to-noise ratio (SNR) under stationary Gaussian

noise [SC05]. Another detection approach is the cyclostationary feature detection

which analyzes the spectral correlation function of modulated signals [FGR05]. Al-

though these two types of detection schemes can achieve precise detection, they

either require priori knowledge of the primary user signal, or have high complexity.

A good alternative is energy detection.

Energy detection is suitable to the scenario when secondary users cannot

gather sufficient information about the primary user signal. An energy detector

10



collects locally observed signal samples within a certain time, measures the signal

energy, and compare the energy with a threshold to determine whether a primary

user is present or not [SC05]. However, energy detection is heavily affected by noise

uncertainty.

Recently, cooperative spectrum sensing with relay nodes’ help and multi-

user collaborative sensing has been shown to greatly improve the sensing perfor-

mance [GS05, MSB06, GL07, PL07, LYZH07, VJP08, GLBL08]. In [GS05], the au-

thors proposed collaborative spectrum sensing to combat shadowing/fading effects.

The work in [MSB06] proposed light-weight cooperation in sensing based on hard

decisions to reduce the sensitivity requirements. The authors of [GL07] showed that

cooperative sensing can reduce the detection time of the primary user and increase

the overall agility. How to choose proper secondary users for cooperation was in-

vestigated in [PL07]. The authors of [LYZH07] studied the design of sensing slot

duration to maximize secondary users’ throughput under certain constraints. Two

energy-based cooperative detection methods using weighted combining were ana-

lyzed in [VJP08]. Spatial diversity in multiuser networks to improve spectrum sens-

ing capabilities of centralized cognitive radio networks were exploited in [GLBL08].

2.1.3 Relay Selection and Power Control in Cooperative

Networks

The performance in cooperative communication networks depends on care-

ful resource allocation, such as relay placement, relay selection, and power con-

11



trol [HA03, SSL08,MY04, LBG+04,BLR05, SHL06,HHSL05, ISSL08, ZAL06,NY07,

SS07, HSHL07, ACM07, LHXS07]. In [HA03], the power allocation was optimized

to satisfy the outage probability criterion. The authors in [SSL08] provided the

analysis on symbol error rates and optimum power allocations for the decode-and-

forward cooperation protocol in wireless networks. The energy-efficient broadcast

problem in wireless networks was considered in [MY04]. The work in [LBG+04]

evaluated the cooperative diversity performance when the best relay was chosen

according to the average SNR, and the outage probability of relay selection based

on instantaneous SNRs. In [BLR05], the authors proposed a distributed relay se-

lection scheme that required limited network knowledge with instantaneous SNRs.

In [SHL06], the relay assignment problem was solved for the multiuser cooperative

communications. In [HHSL05], the cooperative resource allocation for OFDM was

studied. The authors of [ISSL08] investigated the relay selection problem with focus

on when to cooperate and which relay to cooperate with, which required channel

state information (CSI). In [ZAL06], centralized power allocation schemes were pre-

sented by assuming all the relay nodes should help. In order to further minimize the

system outage behaviors and improve the average throughput, a selection forward

protocol was proposed to choose only one “best” relay node to assist transmission.

A centralized resource allocation algorithm for power control, bandwidth allocation,

relay selection and relay strategy choice in an OFDMA-based relay network was

proposed in [NY07]. The work in [SS07] developed distributed power control strate-

gies for multi-hop cooperative transmission schemes. Lifetime extension for wireless

sensor networks with the aid of relay selection and power management schemes was
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investigated in [HSHL07]. The authors of [ACM07] studied the optimal power al-

location problem in the high SNR regime for different relaying protocols. Relay

station placement and relay time allocation in IEEE 802.16j networks was investi-

gated in [LHXS07].

In recent years, some efforts have been made towards mathematical analysis

of cooperation in wireless networking using game theory, since game theory is a

natural and flexible tool that studies how the autonomous network users interact

and cooperate with each other. In game-theoretic literature of wireless networking,

in [MW01], the behaviors of selfish nodes in the case of random access and power

control were examined. In [DPA00], static pricing policies for multiple-service net-

works were proposed. Such policies can offer incentives for each node to choose the

service that best matches its needs, so as to discourage over-allocation of resources

and improve social welfare. The work in [SMG02] presented a power control solution

for wireless data in the analytical setting of a game-theoretic framework. Pricing of

transmit powers was introduced to improve user utilities that reflected the quality

of service a wireless terminal received. A pricing game that stimulated cooperation

via reimbursements to the relay was proposed in [SA06], but there was no detailed

analysis on how to select the best relays and how to achieve the equilibrium dis-

tributively. In [HJL05], the authors employed a cooperative game for the single-cell

OFDMA resource allocation.
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2.2 Game-Theoretic Models

In self-organized wireless networks, users may belong to different operators

and compete for limited network resources, In other words, users are selfish and

only aim at maximizing their own profits by utilizing more resources. With the

rapid development of cognitive radio technique, network users can further make in-

telligent decisions on spectrum usage and communication parameters based on the

sensed spectrum dynamics and other users’ decisions. Moreover, many fundamental

network functionalities, such as packet forwarding, relaying information, and spec-

trum sharing, cannot be performed without relying on cooperation among the selfish

users. In such scenarios, it is no longer feasible to optimize the network performance

by assuming there is a central authority and every user will obey the resource alloca-

tion rule. Therefore, it is natural to study the intelligent behaviors and interactions

of selfish network users from the game-theoretic perspective.

Game theory [FL91,FT93] is a mathematical tool that analyzes the strategic

interactions among rational decision makers. Three major components in a strategic-

form game model are the set of players, the strategy space of each player, and the

payoff/utility function, which measures the outcome of the game for each player.

In cooperative communication networks, source nodes may need to provide

relay nodes with incentives for relaying their data and relay nodes need to select

the best pricing strategy, which can be modeled as a buyer/seller game [WHL07,

WHL09,SA06,HL08]. In cognitive radio networks, the competition and cooperation

among the cognitive network users can also be well modeled as a spectrum sharing
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game [WWLC09,EPT07,JL07,HBH06,Y. 09,WWJ+08]. Specifically, in open spec-

trum sharing (e.g., [WWLC09,EPT07]), the players are all the secondary users that

compete for unlicensed spectrum; in licensed spectrum sharing, where primary users

lease their unused bands to secondary users, the players include both the primary

and secondary users (e.g., [HBH06,Y. 09,JL06]).

The strategy space for each player may vary according to the specific spectrum

sharing scenario. For instance, in cooperative communication networks, the strategy

space of the source nodes includes which relay to choose for help and the relay power

levels, while the strategy space of the relay nodes are the prices for relaying data.

In open spectrum sharing, the strategy space of secondary users may include the

transmission parameters they want to adopt, such as the transmission powers, access

rates, time duration, etc.; while in licensed spectrum trading, their strategy space

includes which licensed bands they want to rent, and how much they would pay for

leasing those licensed bands. For the primary users, the strategy space may include

which secondary users they would lease each of their unused bands to, and how

much they will charge for each band.

The payoff functions for different users are defined to characterize various

performance criteria accordingly. For instance, in open spectrum sharing, the payoff

function for the secondary users is often defined as a non-decreasing function of the

Quality of Service (QoS) they receive by utilizing the unlicensed band; in licensed

spectrum trading, the payoff function for the users often represents the monetary

gains (e.g., revenue minus cost) by leasing the licensed bands.

In a noncooperative spectrum sharing game with selfish network users, each
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user only targets for maximizing his/her own payoff by choosing an optimal strat-

egy. And the outcome of the noncooperative game is often measured by the Nash

Equilibrium (NE). The NE is defined as the set of strategies for all the users such

that no user can improve his/her payoff by unilaterally deviating from the equilib-

rium strategy, given that the other users adopt the equilibrium strategies. So the

NE indicates that no individual user would have the incentive to choose a different

strategy.

2.2.1 Stackelberg Game

If players choose their strategies simultaneously, the game can be described

using a strategic-form representation [FT93]. In order to model a game with a

dynamic structure, game theorists use the concept of a game in extensive form,

which explicitly states the order in which players move, and what each player knows

when making each of his decisions [FT93]. An example of an extensive-form game

is the Stackelberg game [FT93]. In a Stackelberg game, one player must commit

to a strategy before other players choose their own strategies. Specifically, the

players of a Stackelberg game include a leader and a follower/followers. A leader

commits to a strategy first, and then a follower selfishly optimizes his own reward,

considering the strategy selected by the leader. Compared to Nash games, where

all players take their moves simultaneously, Stackelberg games can better model

the scenario with heterogeneous players that take sequential moves. For example in

cooperative communication networks with self-organized nodes/users, after a source
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node broadcasts his data to a destination node and several relay nodes, the relay

nodes will signal their optimal prices for relaying data to the source node, and the

source node then optimizes the service he purchases from the relay nodes. Thus,

we can use Stackelberg game to model such cooperation, where the source node

is the leader and the relay nodes are the followers. Stackelberg game have been

used to model congestion control [BS02], attacker-defender scenarios in security

domains [PPM+08], network routing [KLO97] and scheduling strategies [Rou01].

2.2.2 Evolutionary Game

There can be more than one NE in a game. When there exist several different

NE, how should a rational player decide which of them is the “right one”? Game the-

orists have proposed different refinement criteria [FT93]; however, each equilibrium

could be justified by some refinement. The problem becomes even more complicated

if the players are uncertain about the game being played and the game involves a

dynamic process. Therefore, evolutionary game theory (EGT) was proposed [Smi82]

to reveal the underlying dynamics and find a robust equilibrium.

The idea of EGT was inspired by the study of ecological biology, and it differs

from classic game theory by focusing on the dynamics of strategy change more than

the properties of strategy equilibrium. EGT was first used to study the adjustment

of population fractions by evolution, which states that the genes whose strategies

are more successful will have higher reproductive fitness. Therefore, the population

fractions of strategies whose payoff against the current distribution of opponents’
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play is relatively high will tend to grow at a faster rate. Since strategies with

lower payoff values are eliminated during the dynamic process, the stable steady

states after the evolution converges must be an NE. But not all NE are locally

stable and robust to mutations. In EGT, the equilibrium strategy is defined as the

Evolutionary Stable Strategy (ESS) [Smi82], which is a strategy such that if

all members of the population adopt it, then no mutant strategy could invade the

population under the influence of natural selection. Even if a small part of players

may not be rational and take out-of-equilibrium strategies, ESS is still a locally

stable state.

2.3 Markov Chain

Markov chains are popular models in many application areas, including eco-

nomic systems, queuing theory, and networking. In this section, we focus our at-

tention on the Markov chain in discrete-time domain, and continuous-time Markov

chain can be similarly defined.

A Markov chain is a stochastic process where the probability of the next state

given the current state and the entire past depends only on the current state. Sup-

pose that S = {Xn; n = 1, 2, · · · } is a stochastic process, then {Xn} is a Markov

chain if and only if

Pr(Xn+1 = x|Xn = xn, · · · , X1 = x1) = Pr(Xn+1 = x|Xn = xn), (2.1)

where the countable set of {Xn} represents the state space of the chain. In other

words, the description of the present state fully captures all the information that
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could influence the future evolution of the stochastic process.

Future states will be reached through a probabilistic process instead of a deter-

ministic one. At each step the system may change its state from the current state

to another state, or remain in the same state, according to a certain probability

distribution. The changes of state are called transitions, and the probabilities asso-

ciated with various state-changes are called transition probabilities. If the transition

probability only depends on the current and the next states and not on the time

index of the states, i.e.,

Pr(Xn+1 = j|Xn = i) = Pr(Xn = j|Xn−1 = i), (2.2)

then the Markov chain is called time-homogeneous.

Denote pij = Pr(Xn+1 = j|Xn = i) as the single-step time-independent tran-

sition probability. For a time-homogeneous Markov chain, it can be described by a

transition matrix [pij] (i.e., [pij] is the (i, j)th element), and the stationary distribu-

tion Π of state i ∈ S is defined as a set of probabilities that satisfies

Πj =
∑
i∈S

Πipij, (2.3)

and

∑
j∈S

Πj = 1, (2.4)

where (2.3) is usually called the flow-balance equation.
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Chapter 3

Primary-Prioritized Markov

Approach for Dynamic Spectrum

Allocation

Dynamic spectrum access has become a promising approach to fully utilize

the scarce spectrum resources. It enhances service quality by utilizing others’ spec-

trum resources. Dynamic spectrum access has shown its great potential in efficient

spectrum utilization by opening white space in under-used licensed spectrum to

unlicensed users (a.k.a. secondary users), meaning secondary users can opportunis-

tically utilize the licensed spectrum when primary users are not operating in the

licensed spectrum.

Several prior works as discussed in Chapter 2 have proposed efficient spectrum

management approaches, but most of them only focus on spectrum allocation among
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secondary users in a static spectrum environment. Therefore, several fundamental

challenges still remain unanswered. First, the radio spectrum environment is con-

stantly changing. In conventional power control to manage mutual interference for

a fixed number of secondary users, after each change of the number of contending

secondary users, the network needs to re-optimize the power allocation for all users

completely. This results in high complexity and much overhead. Second, if a pri-

mary user appears in some specific portion of the spectrum, secondary users in that

band need to adapt their transmission parameters to avoid interfering with the pri-

mary user. Furthermore, in addition to maximizing the overall spectrum utilization,

a good spectrum sharing scheme should also achieve fairness among dissimilar users.

If multiple secondary users are allowed to access the licensed spectrum, dynamically

coordinating their access to alleviate mutual interference and avoid conflict with

primary users should be carefully considered.

In this chapter we propose a primary-prioritized Markov approach for dynamic

spectrum access. Specifically, we propose to model the interactions between the

primary users and the secondary users as continuous-time Markov chains (CTMC),

by which we can capture the system evolution dynamics, especially the effect of the

primary user’s activities on the secondary users. It has been shown in [Cla07a],

[Cla07b] that when unlicensed devices coexist with licensed devices in the same

frequency and time simultaneously, the capacity achieved by unlicensed devices with

reduced power is very low, while they still cause harmful interference to the licensed

users. Therefore, in this chapter, we assume that when primary users exist in some

spectrum band, secondary users cannot operate in the same band simultaneously.
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Further, in order to coordinate secondary spectrum access in a fair and efficient

manner, dynamic spectrum access under different criteria is proposed based on the

CTMC models. In the proposed approach, the spectrum access of different users is

optimally coordinated through the modeling of secondary spectrum access statistics

to alleviate mutual interference.

The contributions of the proposed primary-prioritized Markov approach for

dynamic spectrum access are as follows. First, the dynamics of the radio system,

including the primary user’s activities, is thoroughly captured through CTMC mod-

eling. Second, we consider various policies of spectrum access by employing different

optimality criteria, among which we focus on the proportional-fair (PF) spectrum

access approach to achieve the optimal tradeoff between spectrum utilization effi-

ciency and fairness. Third, the proposed PF spectrum access approach can achieve

better performance than the CSMA-based scheme, and can be generalized to spec-

trum sharing among multiple secondary users.

The remainder of this chapter is organized as follows: Dynamic spectrum

access system model is described in Section 3.1. The primary-prioritized Markov

models are derived in Section 3.2, and dynamic spectrum access approaches based

on these models are developed in Section 3.3. The simulation studies are provided

in Section 3.4. Finally, Section 3.5 provides the summary.
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3.1 System Model

We consider dynamic spectrum access networks where multiple secondary users

are allowed to access the temporarily-unused licensed spectrum bands on an oppor-

tunistic basis, without conflicting or interfering the primary spectrum holders’ usage.

Such scenarios can be envisioned in many applications. Considering the fact [FCC02]

that heavy spectrum utilization often takes place in unlicensed bands while licensed

bands often experience low (e.g., TV bands) or medium (e.g., some cellular bands)

utilization, IEEE 802.22 [IEE] proposes to reuse the fallow TV spectrum without

causing any harmful interference to incumbents (e.g., the TV receivers). Moreover,

with regard to more efficient utilization of some cellular bands, [Ofc] proposes to

share the spectrum between a cellular communication system and wireless local area

network (WLAN) systems. In rural areas where there is little demand on the cellu-

lar communication system, the WLAN users can efficiently increase their data rates

by sharing the spectrum.

In order to take advantage of the temporally unused spectrum holes in the li-

censed band, without loss of generality we consider a snapshot of the above spectrum

access networks shown in Figure 3.1, where two secondary users and one primary

user coexist, and the secondary users opportunistically utilize the spectrum holes

in the licensed band. Note that the system diagram shown here serves only as an

example model to gain more insight and the scenario with multiple secondary users

will be studied in details in the following section.

The primary user is denoted by P , which has a license to operate in the
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Figure 3.1: System model (upper: system diagram; lower: throughput vs. time).

spectrum band. The offered traffic for primary user P is modeled with two random

processes1. The service request is modeled as a Poisson process with rate λP s−1.

The service duration (holding time) is negative-exponentially distributed with mean

time 1/µP s, so the departure of user P ’s traffic is another Poisson process with rate

µP s−1.

The secondary users are denoted by A and B, and set S is defined as S =

{A,B}. For each secondary user γ, where γ ∈ S, its service session is similarly

characterized by two independent Poisson processes, with arrival rate λγ s−1 and

departure rate µγ s−1. They contend to access the spectrum when primary user P

is not using the spectrum band.

Since the primary user has a license to operate in the spectrum band, its access

1Identical assumptions that the service requests and departures are Poisson processes can be

found in [XCMS06], [HHLW00] and references therein.
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should not be affected by the operation of any other secondary user, and priority

to access the spectrum is given to primary user P . We assume that the secondary

users equipped with cognitive radios are capable of detecting the primary user’s

activities, i.e., the appearance of the primary user in the spectrum band and its

departure from the spectrum. Furthermore, the secondary users’ access is assumed

to be controlled by a secondary management point so that they can distinguish

whether the spectrum is occupied by the primary user or secondary users. Therefore,

when primary user P appears, the secondary users should adjust their transmission

parameters, for instance reduce the transmit power or vacate the channels and

try to transfer their communications to other available bands. The interference

temperature model [FCC03a] is proposed by FCC that allows secondary users to

transmit in licensed bands with carefully adjusted power, provided that secondary

users’ transmission does not raise the interference temperature for that frequency

band over the interference temperature limit. Although it can provide better service

continuity for the secondary users to remain operating in the band with reduced

power, the capacity they can achieve is very low [Cla07a], [Cla07b]. Therefore, in

this chapter, we assume that when primary user P appears, any secondary user

should vacate and the traffic currently being served is cut off. In the duration

of primary user P being served, any entry of the secondary user’s traffic into the

spectrum is denied until primary user P finishes its service.

In the bottom of Figure 3.1, we show an example of the system throughput

versus time for the dynamic spectrum access. First, user A accesses the spectrum

band, followed by user B. During B’s service, user A accesses the band again and
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shares the spectrum band with user B, which may result in less throughput to both

user A and B due to their mutual interference. After user A has finished its service

for a while, primary user P accesses the band, and user B’s service is interrupted.

After user P vacates the band, user B continues its service until its service duration

ends. Afterwards, user A accesses the band, and its service is ceased when primary

user P appears and resumed when P finishes its service in the way as user B.

For any secondary user γ that operates in the spectrum band alone, its maxi-

mal data rate [CT90] can be represented by

rγ
1 = W log2(1 +

pγGγγ

n0

), (3.1)

where W is the communication bandwidth, n0 is power of the additive white Gaus-

sian noise (AWGN), pγ is the transmission power for user γ, and Gγγ is the channel

gain for user γ. The secondary users A and B are allowed to share the spectrum

band. We assume that the transmitter of a secondary user can vary its data rate

through a combination of adaptive modulation and coding, so the transmitter and

receiver can employ the highest rate that permits reliable communication, given the

signal-to-interference-plus-noise ratio (SINR). We assume that the secondary users

use random Gaussian codebooks, so their transmitted signals can be treated as

white Gaussian processes and the transmission of other secondary users are treated

as Gaussian noise. Then, the maximal rate of user γ when secondary users share

the spectrum can be represented by

rγ
2 = W log2(1 +

pγGγγ

n0 +
∑

α6=γ pαGαγ

), (3.2)

where α 6= γ, α ∈ S, and Gαγ is the channel gain from user α’s transmitter to user
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γ’s receiver.

3.2 Primary-Prioritized Markov Models

In this section, we derive primary-prioritized Markov models to capture the

dynamics of spectrum access statistics for the primary user and the secondary users.

3.2.1 CTMC without Queuing

In dynamic spectrum access, where the secondary users opportunistically ac-

cess the unused licensed spectrum, priority should be given to the primary user.

That is, secondary users cannot operate in the same spectrum band with the pri-

mary user at the same time; when the primary user appears in the spectrum band, all

secondary users in the same band should stop operating in the spectrum. Moreover,

the arrival and departure of different users’ traffic are assumed to be independent

Poisson processes. Therefore, we model the interactions between the secondary users

and the primary user as a primary-prioritized CTMC.

In the CTMC, when the secondary users contend to access the idle spectrum

using CSMA, collisions only occur when their service requests arrive exactly at the

same time. This case rarely happens for independent Poisson processes. Therefore,

in the CTMC model we omit the collision state of the secondary users, and assume

their service durations always start from different time instances.

If we assume that when the primary user appears, there is no queuing of

the interrupted service for the secondary users, then we can model the spectrum
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Figure 3.2: The rate diagram of CTMC with no queuing.

access process as a five-state CTMC shown in Figure 3.2. We denote this five-state

Markov chain by “CTMC-5” for short, where state 0 means no user operates in the

spectrum, state γ means user γ operates in the spectrum with γ ∈ {A,B, P}, and

state 2 means both user A and user B operate in the spectrum.

Assume at first the spectrum band is idle, i.e., CTMC-5 is in state 0. Secondary

users contend to operate in the spectrum. Upon the first access attempt of some user,

say user A, CTMC-5 enters state A with transition rate λA s−1. If user A’s service

completes before any other user requests spectrum access, CTMC-5 then transits to

state 0 with rate µA s−1. If user B’s service request arrives before A completes its

service, CTMC-5 transits to state 2 with rate λB s−1, where both secondary users

share the spectrum. Once user B (or A)’s service is completed, CTMC-5 transits

from state 2 to state A (or B), with rate µB (or µA) s−1. However, primary user

P may, once in a while, appear during the service duration of the secondary users,

i.e., when CTMC-5 is in state A, B or 2. At that time, the secondary user’s traffic

is dropped to avoid conflict with the primary user, and CTMC-5 transits to state
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P with rate λP s−1. During the primary user operating in the spectrum band, no

secondary user is given access to the spectrum. CTMC-5 transits to state 0 with

rate µP s−1 only if P completes its service.

The “flow-balance” (the rate at which transitions take place out of state si

equals to the rate at which transitions take place into state si) and the normalization

[Kul95] equations governing the above system are given by

µAΠA + µP ΠP + µBΠB = (λA + λB + λP )Π0, (3.3)

λAΠ0 + µBΠ2 = (µA + λP + λB)ΠA, (3.4)

λP (Π0 + ΠA + Π2 + ΠB) = µP ΠP , (3.5)

λBΠ0 + µAΠ2 = (µB + λP + λA)ΠB, (3.6)

λBΠA + λAΠB = (µB + λP + µA)Π2, (3.7)

Π0 + ΠA + ΠB + ΠP + Π2 = 1, (3.8)

where Πsi
represents the stationary probability of being in state si, si ∈ S 4

=

{0, A, B, P, 2}.

The solutions to the above equations, i.e., the probabilities when the spectrum

is occupied by either primary user P or the secondary users, are given by

ΠP = λP /(λP + µP ), (3.9)

ΠA = C1λA[λBµB + (λP + µB)(λA + λP + µA + µB)], (3.10)

ΠB = C1λB[λAµA + (λP + µA)(λB + λP + µA + µB)], (3.11)

Π2 = C1λAλB(λA + λB + 2λP + µA + µB), (3.12)
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where, for simplicity, the coefficient C1 is defined as

C1 =(1− ΠP )[(λA + µA + λP )(λB + µB + λP )

(λA + µA + λB + µB + λP )]−1.

(3.13)

One of the most important goals in spectrum sharing is efficient spectrum

utilization, i.e., high throughput achieved by each secondary user through successful

acquisition of a spectrum band. From a statistical point of view, the secondary users

want to maximize their average throughput. Given the solutions of the steady state

probabilities, we know that Πsi
is the stationary probability that the system is in

state si, so it can be thought of as the expected long-run fraction of the time that

the CTMC spends in state si [Kul95]:

Πsi
= lim

T→∞
1

T

∫ T

0

Pr{S(t) = si}dt, (3.14)

where S(t) is the state of the CTMC at time t. If we define

Uγ = lim
T→∞

1

T
E

(∫ T

0

Rγ(S(t))dt

)
(3.15)

as the long-run expected average throughput for user γ, where Rγ(S(t)) is the

throughput of user γ achieved in state S(t), we have

Uγ = lim
T→∞

1

T

∫ T

0

E(Rγ(S(t)))dt

= lim
T→∞

1

T

∫ T

0

∑
si∈S

Rγ(si)Pr{S(t) = si}dt

=
∑
si∈S

Rγ(si) lim
T→∞

1

T

∫ T

0

Pr{S(t) = si}dt

=
∑
si∈S

Rγ(si)Πsi
.

(3.16)
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The interchanges of limits, integrals, sums, etc. are permitted as long as
∑

si∈S |Rγ(si)|

Πsi
< ∞. Thus, from CTMC-5, we can express the total average throughput for

user γ as follows,

Uγ = Πγr
γ
1 + Π2r

γ
2 , (3.17)

where Πγ and Π2 are as solved in (3.10)-(3.12), and rγ
1 and rγ

2 are defined in (3.1)

and (3.2), respectively. The first term on the right-hand side of (3.17) represents

the throughput when user γ occupies the spectrum alone, and the second term

represents the throughput when two secondary users share the spectrum.

Therefore, by using CTMC-5, we not only can capture the dynamic utiliza-

tion of the unused licensed spectrum for secondary users without conflicting with

the primary user, but also can study their stationary behaviors and quantify their

spectrum utilization from a statistical point of view.

The CTMC can also be generalized to model the scenario with more than

two secondary users. Suppose the set of N secondary users is denoted by S =

{1, · · · , N}, then the state space A consists of 2N + 1 combinations of the status of

primary user P and the secondary users:

(ΦP ,ΦS) ∈ A 4
= {(1, [0, · · · , 0])}

⋃

{(0, φS) : φS
4
= [nN , · · · , n1] ∈ {0, 1}N},

(3.18)

where state (1, [0, · · · , 0]) represents the case where the primary user is in service in

the spectrum band alone, and {(0, φS)} represents all 2N states where primary user

P is not in service and zero up to N secondary users are in service.

For this generalized Markov model, the rate diagram can be drawn as an N -

31



dimensional hypercube. Each vertex of the hypercube represents a state in {(0, φS)};

each edge connecting two vertices is bi-directional, and it represents the transition

that some secondary user begins or completes its service. The center of the hyper-

cube represents state (1, [0, · · · , 0]); a straight line from each vertex to the center

represents the transition when primary user P begins its service, and another line

from the center to state (0, [0, · · · , 0]) represents the transition when user P com-

pletes its service.

The stationary probabilities can be obtained as follows.

• Notation: Let Si denote state (0, [nN , · · · , n1]), where nk ∈ {0, 1}, k = 1, · · · , N ,

and i =
∑N

j=1 2j−1nj, S2N denote state (1, [0, · · · , 0]), and qij
4
= q{Si → Sj}

denote the transition rate from state Si to Sj;

• Construct the generator matrix Q = [qij]:

1. for Si = (0, [nN , · · · , nj, · · · , n1]), where i = 0, · · · , 2N − 1, and j =

1, · · · , N ,

q{(0, [nN , · · · , nj, · · · , n1]) → (0, [nN , · · · , 1 − nj, · · · , n1])} = µj(nj =

1), or λj(nj = 0); q{Si → S2N} = λP ; qii = −∑
j 6=i qij;

2. q{S2N → S0} = µP , q{S2N → S2N} = −µP ;

• Solve the stationary probability Π = [ΠS0 , · · · , ΠS
2N−1

, ΠS
2N

] from

QaugΠ
T = b, (3.19)

where Qaug =




QT

11×(2N+1)


, and b =




0(2N+1)×1

1


.
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Figure 3.3: The rate diagram of CTMC with queuing.

For each secondary user γ, γ ∈ S = {1, · · · , N}, its average throughput con-

sists of 2N−1 components, each of which represents the average throughput when

user γ, together with zero up to all the other N − 1 secondary users, are in ser-

vice. Since more secondary users contend the spectrum access, the contention in

the generalized Markov model becomes heavier than CTMC-5. As a result, each

secondary user shares less spectrum access on average. Moreover, the interference

also increases by introducing more secondary users. Therefore, as the number of

secondary users increases, the average throughput for each of them is reduced.

3.2.2 CTMC with Queuing

In CTMC-5 presented in Section 3.2.1, the service of the secondary users is

forced to stop and be dropped when primary user P appears in the spectrum band.

After primary user P completes its service, CTMC-5 will transit to the idle state.
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However, there may be some time interval wasted between when the system is

in the idle state and the next secondary user accesses the spectrum. In order to

further increase the spectrum utilization, queuing of the secondary users’ service

requests due to the primary user’s presence is considered. More specifically, when

the spectrum is being occupied by secondary users, upon the appearance of primary

user, the secondary users should stop transmission, buffer their interrupted service

session, and continue scanning the licensed band until the licensed band becomes

available again. Also, if the primary user begins to operate in the previously idle

spectrum, new service requests of secondary users are also queued. In this chapter,

we assume that there is one waiting room for the secondary user, i.e., each user

can only buffer a single service request; and if a service request already exists in the

queue, the secondary user will direct the following service requests to other available

licensed bands to avoid potential delay, and that scenario is beyond the scope of this

chapter.

By considering the above factors, we model the spectrum access with queuing

as an eight-state CTMC, denoted by “CTMC-8”. The rate diagram of CTMC-

8 is shown in Figure 3.3. Compared to CTMC-5 and its dynamics, in CTMC-8

three additional states are introduced: (P,Aw), (P,Bw) and (P, (AB)w). State

(P, γw) means primary user P is in service and secondary user γ is waiting, and

state (P, (AB)w) means P is in service and both secondary users are waiting. The

transitions in CTMC-8 are briefed as follows. When the spectrum band is occupied

by secondary user A, if A detects that primary user P needs to acquire the spectrum

band, it buffers the unfinished service session, sensing the licensed band until the
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end of the primary user’s service session, and CTMC-8 transits from state (0, A)

to state (P, Aw) with rate λP s−1. If primary user P finishes its service before B’s

access, CTMC-8 transits from state (P, Aw) to (0, A) with rate µP s−1. In contrast,

if secondary user B requests access to the licensed spectrum before primary user

P completes its service duration, B also buffers its service session, and CTMC-8

transits to state (P, (AB)w) with rate λB s−1. In state (P, (AB)w), both A and

B keep sensing the spectrum. Once P vacates, CTMC-8 transits to state (0, AB)

with rate µP s−1, where A and B share the spectrum band. Also, when CTMC-8

is in state (P, 0), if secondary users attempt to access the spectrum, they will keep

sensing the licensed band until the primary user vacates, and CTMC-8 transits to

state (P, Aw) or state (P,Bw), with rate λA s−1 or λB s−1, respectively.

The equations governing the above system and the corresponding solutions

can be obtained in a similar way as in Section 3.2.1.

CTMC with queuing can also be generalized to model the scenario with more

than two secondary users. For the Markov chain with a set S = {1, · · · , N} of

secondary users, the state space B consists of all possible 2N+1 combinations of the

status for primary user P and the secondary users:

(ΨP ,ΨS) ∈ B 4
= {(1, ψw

S )
⋃

(0, ψS) : ψS
4
= [nN , · · · , n1] ∈ {0, 1}N},

(3.20)

where {(1, ψw
S )} represents all 2N states in which the primary user is in service and

zero up to N secondary users are waiting, and {(0, ψS)} represents all 2N states

where primary user P is not in service and a subset of the N secondary users are in

service. The rate diagram for this model can be similarly drawn as in Section 3.2.1,
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and the stationary probabilities can be obtained as follows.

• Notation: Let Si denote state (0, [nN , · · · , n1]), and Sw
i denote state (1, [nN ,

· · · , n1]
w).

• Construct the generator matrix Q = [qij]:

1. for Si = (0, [nN , · · · , nj, · · · , n1]), where i = 0, · · · , 2N − 1, and j =

1, · · · , N ,

q{(0, [nN , · · · , nj, · · · , n1]) → (0, [nN , · · · , 1 − nj, · · · , n1])} = µj(nj =

1), or λj(nj = 0);

q{(1, [nN , · · · , nj, · · · , n1]
w) → (1, [nN , · · · , 1− nj, · · · , n1]

w)} = λj(nj =

0);

2. q{Si → Sw
i } = λP ; q{Sw

i → Si} = µP ; qii = −∑
j 6=i qij;

• Solve the equation array similar to (3.19).

As more secondary users contend the spectrum, in addition to increased inter-

ference, more waiting time is also introduced; therefore, the average throughput for

each secondary user will be reduced.

3.3 Proposed Dynamic Spectrum Access

In this section, we will first analyze the effect of secondary users’ behavior on

the system performance. Then, we propose primary-prioritized dynamic spectrum

access with different optimality criteria and compare them to CSMA-based random

access approaches.
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In order to develop primary-prioritized dynamic spectrum access, it is impor-

tant to first analyze the behavior of the secondary users. Since the secondary users

contend for the spectrum, if they access the spectrum in a greedy manner such that

all of their injected traffic is admitted, then the Markov chain is more likely to be

in the state where more than one user shares the spectrum. Hence, the secondary

users may suffer a throughput degradation due to interference, if there is no control

on very high arrival rates. On the other hand, if the secondary users reduce their

arrival rates too much so as to avoid interference, the average throughput may be

unnecessarily low. Therefore, secondary user spectrum access should be carefully

controlled.

In the proposed dynamic spectrum access scheme, we introduce the state-

dependent spectrum access probabilities for user A and user B, and the result-

ing random access process can be approximated by slightly modifying the original

CTMCs. Without loss of generality, we take CTMC-5 as an example, and the mod-

ified Markov chain is shown in Figure 3.4. It is seen from the figure that when

one secondary user, e.g. user B, already occupies the spectrum and the system is

in state B, user A’s spectrum access requests are admitted with probability aA,1,

where 0 ≤ aA,1 ≤ 1. Since on average one out of 1
aA,1

user A’s access requests

are allowed when user B is in service, the chance of coexistence of the secondary

users and mutual interference can be reduced. Due to the decomposition property of

Poisson random process [Kul95], if each access request of user A has a probability

aA,1 of being admitted, then the number of actual admitted access requests is also

a Poisson process with parameter aA,1λA s−1. Hence, the transition rate from state
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Figure 3.4: Modified CTMC with access control (no queuing).

B to state 2 now becomes aA,1λA s−1. It is also seen that user A’s access requests

are admitted with probability aA,2 when the spectrum is idle (i.e., the transition

from state 0 to state A). However, there is no interference in state A. In order to

obtain a high throughput, we assume that when the spectrum is sensed idle, user A

is allowed to access the spectrum with probability one, i.e., aA,2 = 1. In addition,

it is expected that if the mutual interference between the secondary users is high,

aA,1 should be close to 0; if there is little mutual interference, aA,1 should be close

to 1. User B’s spectrum access is controlled in a similar way as user A, because the

CTMC is symmetric.

Denote the access probability for user A and user B as vectors aA = [aA,1, aA,2],

and aB = [aB,1, aB,2], respectively. Then, the optimization goal is to determine aA

and aB, such that the system performance can be maximized, i.e.,

{aγ} = argmax
0≤aγ≤1

U({aγ}), (3.21)
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where ∀γ ∈ {A,B}.

Since a good spectrum sharing scheme not only can efficiently utilize the spec-

trum resources, but also can provide fairness among different users, we first propose

to maximize the average throughput based on PF criterion [Kel97] [HJL05]. Thus,

in (3.21), U(aA, aB) can be written as

UPF (aA, aB) =
∏
γ∈S

Uγ(aA, aB). (3.22)

We also consider other criteria to compare with PF, expressed by the following

maximal-throughput criterion

U(aA, aB) =
∑
γ∈S

Uγ(aA, aB), (3.23)

and max-min fairness criterion

U(aA, aB) = min
γ∈S

Uγ(aA, aB). (3.24)

For the maximal-throughput optimization, the overall system throughput is

maximized, but the users with the worse channel conditions may starve. For the

max-min fairness optimization, the performance of the secondary user with the

worst channel condition is optimized, while resulting in inferior overall system per-

formance. In this chapter, we will demonstrate that the PF dynamic spectrum access

is preferred because it can ensure more fairness than the maximal-throughput opti-

mization, while achieve better performance than the max-min fairness optimization.

Specifically, the definition of PF is expressed as follows.

Definition: The throughput distribution is proportionally fair if any change in

the distribution of throughput pairs results in the sum of the proportional changes
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of the throughput being non-positive [Kel97], i.e.,

∑
γ∈S

Uγ(aA, aB)− U∗
γ (aA, aB)

U∗
γ (aA, aB)

≤ 0, (3.25)

where U∗
γ (aA, aB) is the proportionally fair throughput distribution, and Uγ(aA, aB)

is any other feasible throughput distribution for user γ.

The optimal solution U∗
γ (aA, aB) defined in (3.25) can be obtained by solving

(3.21), with U(aA, aB) defined in (3.22). We sketch the proof as follows.

Since the function of ln is monotonic, the PF-based utility defined in (3.22) is

equivalent to

∑
γ∈S

ln Uγ(aA, aB). (3.26)

Define Ũγ = ln Uγ, then the gradient of Ũγ at the PF utility U∗
γ is ∂Ũγ

∂Uγ

∣∣∣
U∗γ

= 1
U∗γ

.

As the PF utility U∗
γ optimizes (3.26), for a small feasible perturbation from

the PF utility, we can omit the high-order polynomials in the Taylor series, apply

first-order Taylor approximation, and obtain the following condition:

∑
γ

∂Ũγ

∂Uγ

∣∣∣
U∗γ

(Uγ − U∗
γ ) =

∑
γ

Uγ − U∗
γ

U∗
γ

≤ 0, (3.27)

Since the feasible region for Uγ is a convex set and the logarithm function (3.26) is

strictly concave, (3.27) holds for any point deviating from the PF utility. Therefore,

the definition of the PF criterion in (3.22) and (3.25) is equivalent.

As mentioned earlier in this section, we assume aA,2 = aB,2 = 1, then the two

access probabilities to be optimized are aA,1 and aB,1. We denote them by aA and

aB for simplicity, and can write Uγ as

Uγ(aA, aB) = Πγ(aA, aB)rγ
1 + Π2(aA, aB)rγ

2
, (3.28)
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where

ΠA(aA, aB) = C1λA[(λP + µB)(aAλA + λP + µA + µB) + aAλBµB]

ΠB(aA, aB) = C1λB[(λP + µA)(aBλB + λP + µA + µB) + aBλAµA]

Π2(aA, aB) = C1λAλB[aA(aB(λA + λB) + λP + µA) + aB(λP + µB)]

, (3.29)

with

C1 =(1− ΠP )
{

aAλA[aBλB(λA + λB + λP ) + (λB + λP )(λP + µA)

+ (λB + λP + µA)µB + λA(λP + µB)]

+ (λP + µA + µB)[λA(λP + µB) + (λP + µA)(λB + λP + µB)]

+ aBλB[(λP + µA)(λB + λP + µB) + λA(λP + µA + µB)]
}−1

,

(3.30)

When 0 ≤ aγ ≤ 1, we have ΠA(aA, aB) ≥ 0, ΠB(aA, aB) ≥ 0, Π2(aA, aB) ≥ 0,

and Uγ(aA, aB) ≥ 0. Taking derivative of Uγ(aA, aB) with respect to aA, we can

show that

∂UA(aA, aB)

∂aA

> 0,
∂UB(aA, aB)

∂aA

< 0. (3.31)

So when secondary user A is given more chance to access the frequency band,

i.e., when aA increases, UA(aA, aB) becomes larger while UB(aA, aB) shrinks, in-

dicating that there is a possible tradeoff to choose the optimal aA that maximizes

UPF (aA, aB) = UA(aA, aB)UB(aA, aB). However, it can be seen that there are a lot of

variables in Uγ(aA, aB) and hence the objective function UPF (aA, aB). In addition,

the utility of each secondary user Uγ is a complicated function of the {λγ, µγ, aγ}’s

and the data rates {rγ
1 , r

γ
2}’s. Therefore, it is analytically difficult to justify the

concavity for arbitrary parameters. Nevertheless, given a specific set of parameters

{λγ, µγ}’s and {rγ
1 , r

γ
2}’s, we can substitute their values in (3.29) and determine
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Table 3.1: Primary-prioritized dynamic spectrum access

1. Initially primary user P is operating in the spectrum band;

2. Secondary access point obtains optimal access probabilities defined in

(3.32) for secondary users (Other optimality criteria can also be

implemented);

3. Once primary user P is sensed to have completed its service, secondary

users start to access the spectrum band with the probabilities solved

in Step 2 depending on various states;

4. When primary user P re-appears in the band, secondary users currently

operating in the band vacate;

5. If secondary users still have service not completed, go back to Step 3;

If the statistics of secondary users’ services or their locations change,

go to Step 2.
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the concavity of UPF (aA, aB) by observing the Hessian matrix ∇2UPF (aA, aB), for

0 ≤ aA, aB ≤ 1. When the two eigenvalues of ∇2UPF (aA, aB) are not greater

than zero, i.e., the Hessian matrix is negative semidefinite, we can determine that

UPF (aA, aB) is concave with respect to aA and aB, and the optimal access probabil-

ities can be expressed as

aopt
γ,i = min{max(a∗γ,i, 0), 1}, (3.32)

where a∗γ,i is the solution to the following equations

∂UPF (aA, aB)

∂aγ,i

= 0, ∀γ, i ∈ S. (3.33)

However, for some value of λγ, µγ, if rγ
1 À rγ

2 , indicating heavy mutual interference,

function UPF (aA, aB) may not be concave, and the optimal solution of aγ is 0 to

avoid interference. Another instance where UPF (aA, aB) is not concave happens

when λγ ¿ µγ, and the optimal solution is aγ = 1.

We assume that there exists a secondary base station (BS) that can control

the medium access for all the secondary users. The secondary users send periodic

reports to the BS informing it about their service statistics and date rates. Using

the information gathered from all secondary users, the BS evaluates the spectrum

utilization, computes the optimal access probability in different states (i.e., when

different set of secondary users are in service), and sends the access probability to

the secondary users. Based on the above discussions, we illustrate our primary-

prioritized Markov approach for dynamic spectrum access in Table 3.1.

The proposed primary-prioritized dynamic spectrum access shares some char-

acteristic with conventional medium access control (MAC) protocols, since they
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all target appropriate coordination of different users’ access to the medium. For

instance, in IEEE 802.11 [IEE99], a CSMA/CA mechanism is employed. If the

medium is sensed idle, a user transmits its packet; if the medium is sensed busy,

then the user may re-schedule the retransmission of the packet according to some

random back-off time distribution. These kinds of protocols are effective when the

medium is not heavily loaded, since they allow users to transmit with minimum de-

lay. However, under heavy traffic load, there is always a chance that users’ attempts

conflict with each other. If the conflicted users are kept waiting for an idle medium,

their packets suffer significant delay and may expire.

In the proposed primary-prioritized dynamic spectrum access, different sec-

ondary users are allowed to share the spectrum band simultaneously. This will

increase the spectrum utilization because of the following reasons. First, for in-

dependent Poisson processes, the service durations of different secondary users are

generally not the same. For instance, in CTMC-5, even though user B begins oper-

ating in the spectrum band right after user A, it is possible that user A completes its

service much earlier than user B. After user B is admitted to occupy the spectrum

band, the two secondary users share the spectrum only for a very short time. Once

A finishes its service, the Markov chain transits to the state where B operates in

the spectrum alone and no interference exists. Using CSMA protocols, however,

user B is forced to re-transmit its packet after a random back-off time, which may

not be short. Therefore, using the proposed approaches, the spectrum can be more

efficiently utilized. Furthermore, in the proposed schemes, optimal access probabili-

ties are employed to carefully control the coexistence of the secondary users. In this
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way, the interference is maintained at a low level.

Also, in a mobile network, the radio spectrum environment is dynamic. When

using global optimization approaches specific to a fixed environment, for instance

conventional power control to manage mutual interference between a fixed number

of secondary users, after each change in the number of contending secondary users,

the network needs to re-optimize the power allocation for all users completely. This

results in high complexity and much overhead, especially when there are frequent

service requests and the service duration is short. In the proposed approach, by

controlling the access probabilities for secondary users, there is no need to perform

delicate power control to manage the interference, and computational complexity is

reduced while the average throughput is maximized in the long-run.

In order to achieve optimal dynamic spectrum access, a certain overhead

is needed. More specifically, the overhead mainly comes from access controlling

and sensing primary users. To optimally coordinate the access of the secondary

users, necessary measurements needs to be taken, such as the throughput and ar-

rival/departure rates for different secondary users. On the other hand, detecting a

primary user’s presence relies mainly on the observations from the secondary users

and the necessary spectral analysis.

3.4 Simulation Studies

In this section, we first compare the performance of CTMC-8 with different

optimization goals (maximal-throughput, max-min, and PF). Then we compare the
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performance of CTMC-8, CTMC-5, and the nonpersistent CSMA-based random

access. Finally we show the throughput gain of spectrum sharing among more than

two secondary users against the case without access control.

The parameters in the simulations are chosen as follows. We set the bandwidth

of the licensed spectrum as W = 200 KHz, the transmission power of each secondary

user pγ = 2 mW, the noise power n0 = 10−15 W, and the propagation loss exponent

factor as 3.6. The departure rates µA, µB, µP are set to be 100 s−1. According

to [M. 05], in the spectrum band allocated to cellular phone and Specialized Mobile

Radio (SMR), the fraction of time that the spectrum is being used by primary users

in an urban environment is measured as approximately 45%. Thus, when µP is

100 s−1, we set the arrival rate of the primary user λP = 85 s−1. The arrival rate

of secondary user B is λB = 85 s−1, and we vary λA from 70 to 100 s−1. In the

simulation results, we use “Max-Thr” to denote the maximal-throughput criterion,

“Max-Min” to denote the max-min fairness criterion, and “A” and “B” to denote

secondary users A and B, respectively.

3.4.1 CTMC-8 for the Symmetric-Interference Case

In the first set of simulations, we test the case where two secondary users

experience symmetric interference. The transmitter of user A is at (0m, 0m), and

its receiver is at (200m, 0m). The transmitter of user B is at (200m, 460m), and

its receiver is at (0m, 460m). According to their symmetric locations, we know that

rB
1 = rA

1 > rB
2 = rA

2 from (3.1) and (3.2). In Figure 3.5, we show the optimal
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Figure 3.5: Access probability vs. λA (symmetric-interference, λB = 85 s−1).

access probability versus λA for each secondary user when the other secondary user

is transmitting, i.e., the access probability associated with the transition from state

(0, γ) to (0, AB) in CTMC-8 (see Figure 3.3).

Since CTMC-8 is symmetric for the two users, when λA < λB = 85 s−1, user A

will have a smaller time share than user B if there is no access probability control.

Further because we have rB
1 = rA

1 > rB
2 = rA

2 , from the definition of the average

throughput in (3.17), user A will experience a lower average throughput than B. In

order to provide more fairness, PF and max-min optimization assigns user B a zero

access probability and assigns user A a higher access probability than user B when

λA < λB = 85 s−1. With the increase of λA, the difference between the two users’

time share becomes smaller, so the access probability of user A decreases and is

equal to B’s access probability when λA = λB. When λA > λB, user B is assigned a

higher access probability due to a smaller time share, while user A’s access requests
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Figure 3.6: Average throughput vs. λA (symmetric-interference, λB = 85 s−1).

are denied. However, when λA > λB = 85 s−1, λA is much higher and the probability

of State A is also higher, in order to reduce the mutual interference, the growth of

B’s access probability is not symmetric to the decrease of A’s. Due to the mutual

interference, the maximal-throughput optimization assigns zero access probability

to both users when the other user is in service.

In Figure 3.6, we show the throughput Uγ for each user. Max-min fairness

optimization provides absolute fairness to both users: the two Uγ’s are identical

and increase as λA goes up. In the PF optimization, when λA < λB, we have

UA < UB. As λA becomes higher, UA increases; however, as shown in Figure 3.5,

user A’s access probability decreases as λA increases until λA = λB = 85 s−1, so the

mutual interference is managed and UB also increases. When λA = λB = 85 s−1,

UA = UB, since the secondary users are identical in terms of both channel conditions

and service requests. As λA further increases, UA > UB and UA keeps increasing;
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Figure 3.7: Access probability for different λP (λB = 85 s−1).

since user B’s access probability increases as λA > λB = 85 s−1 (see Figure 3.5), UB

also increases. For the maximal-throughput optimization, as seen from Figure 3.5,

the access probabilities of the two users are both zero, indicating that they are not

allowed to transmit simultaneously, so UA keeps increasing as λA increases, while

UB drops quickly, which is unfair.

In Figure 3.7, we show the effect of λP on the average access probability.

In this set of simulations, λB is still set as 85 s−1 and we vary λA from 70 to

100 s−1. We know from Figure 3.5 that the user with the higher access rate has

a zero access probability when the other user is in service. Therefore, we only

demonstrate the nonzero access probability of the user with a lower access rate,

i.e., we show user A’s access probability when λA < λB = 85 s−1 and user B’s

access probability when λA > λB = 85 s−1. In Figure 3.7, we compare the average
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Figure 3.8: Access probability vs. λA (asymmetric-interference, λB = 85 s−1).

access probability when λP is chosen from {90, 80, 70} s−1. We know that as λP

increases, the competition between the secondary users becomes more severe. In

order to reduce mutual interference, when λA is a fixed value, both users’ access

probabilities decrease as λP becomes larger.

3.4.2 CTMC-8 for the Asymmetric-Interference Case

In the second set of simulations, the transmitter of user A is at (0m, 0m), and

its receiver is at (200m, 0m). The transmitter of user B is at (185m, 460m), and

its receiver is at (15m, 460m). Under these settings, we have rB
1 > rA

1 > rB
2 > rA

2

from (3.1) and (3.2), so the interference is asymmetric. In Figure 3.8, we show

the optimal access probabilities versus λA for each secondary user when the other

is transmitting. Since user A has a worse channel condition than user B, for the

maximal-throughput optimization, user A’s access probability is 0 (e.g., user A’s
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Figure 3.9: Average throughput vs. λA (asymmetric-interference, λB = 85 s−1).

requests are always rejected) when user B is in service, which is unfair. For the

PF or max-min fairness optimization, when λA < λB = 85 s−1, user A’s access

probability is 1 (e.g., user A’s requests are always admitted), while only a part of

B’s requests are admitted, due to fairness concerns. When λA is a little greater

than λB, unlike the symmetric-interference case, user A’s probability is still 1 and

higher than B’s access probability, because user A has a worse channel condition

than B. When λA exceeds 90 s−1, the chance of co-existence is so high that the

access probabilities for both users drop to avoid interference.

In Figure 3.9, we show the average throughput for each secondary user. We

know from Figure 3.8 that in the maximal-throughput optimization, user A’s access

probability is 0 and user B’s access probability is 1; therefore, UB is much greater

than UA. The PF optimization greatly reduces the throughput difference between

the two users, with only a small loss of total throughput.
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3.4.3 Comparison with a CSMA-based Scheme

In Figure 3.10, we show the overall throughput of the PF dynamic spec-

trum access for CTMC-8, CTMC-5, and the overall throughput for a CSMA-based

scheme [KT75]. The transmitters for both secondary users are uniformly located in

a 200m × 200m square area, the distance between each transmitter-receiver pair is

uniformly distributed in [100m, 200m], and the other parameters are the same as in

the previous setting. We choose the slotted version of the nonpersistent CSMA to

avoid frequent collisions assuming the secondary users experience severe contention

for the licensed spectrum, and the slot size is 0.005. So when primary user P is

absent and one secondary user γ is transmitting, the later-coming secondary user

senses the spectrum in every 0.005/µγ s until the licensed spectrum is available

again.

We can see that the PF access for both CTMCs have better performance than
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CSMA-based scheme as λA increases. This is because in CSMA, the secondary users

cannot utilize the spectrum at the same time. Thus, even though interference exists

when secondary users share the spectrum, by allowing spectrum sharing between

them and optimally controlling their access probabilities, performance gain can still

be achieved.

As λA increases, the overall throughput of the PF access for both CTMCs

increases, while the throughput of CSMA-based scheme decreases. When λA = 100

s−1, CTMC-5 can achieve about 50% throughput gain over CSMA, and CTMC-8

can achieve more than 95% throughput gain. This shows that the proposed PF

access approach has a larger capability than CSMA to accommodate more traffic.

Moreover, the spectrum efficiency of CTMC-8 is higher than that of CTMC-5, due

to queuing of the interrupted service.

3.4.4 Comparison with a Uniform-Access-Probability Scheme

In [WJL07], we have proposed a uniform access probability for each secondary

user no matter what state the CTMC is in. However, when the licensed spectrum

is idle, the access probability may restrain full spectrum utilization. Moreover, the

interference condition for one secondary user is varying when different subsets of

secondary users share the spectrum. Only optimizing one single access probability

may result in a sub-optimal solution. In this subsection, we conduct simulations

to compare the scheme proposed in this chapter with the one in [WJL07]. In the

comparison, we adopt the PF method, while the transmission power, request/service
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rates, and the locations of the secondary users are all uniformly distributed in a

proper interval, and we test 1000 independent experiments to get the average. The

histogram of the performance gain (UPF ) is shown in Figure 3.11. We see that the

proposed scheme in this chapter with state-dependent access probability achieves

on average a 24% higher system throughput than the scheme using a uniform access

probability in [WJL07].

3.4.5 Spectrum Sharing Among Multiple Secondary Users

Spectrum access with multiple secondary users can also be optimally controlled

using a method where the access probabilities are obtained with numerical search

algorithms. The transmitter-receiver pair of each user is randomly distributed in a

200m× 200m square area, and the transmission power is randomly chosen between

1mW and 3mW. In Figure 3.12, we compare the total throughput of the proposed
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PF spectrum access to that without access control (i.e., all service requests are

admitted with probability one). By optimizing the access probabilities, the pro-

posed scheme achieves 17% higher throughput on average, since the interference

is successfully alleviated. We also see that as the number of competing secondary

user increases, the average throughput for each user is greatly reduced, since the

spectrum competition becomes much heavier and each user has a smaller spectrum

share.

3.5 Summary

In this chapter, we propose a primary-prioritized Markov approach for dynamic

spectrum access. We model the interactions between the primary users and the sec-

ondary users as continuous-time Markov chains, and optimize the state-dependent

access probabilities for secondary users so that the spectrum resources can be ef-
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ficiently and fairly shared by the secondary users in an opportunistic way without

interrupting the primary usage. The simulation results show that the proposed

spectrum access with PF criterion can achieve up to 95% performance gain over a

CSMA-based random access approach, and also achieves the optimal tradeoff be-

tween efficient spectrum utilization and fairness.
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Chapter 4

Evolutionary Game for

Cooperative Spectrum Sensing

Good dynamic spectrum sharing schemes require precise spectrum sensing,

which is an essential functionality that prevents primary users from being interfered

by secondary users. Recent study has shown that cooperative spectrum sensing

with multiple secondary users can further improve the efficiency of primary user

detection.

However, in most of the existing cooperative spectrum sensing schemes as we

discuss in Chapter 2, a fully cooperative scenario is assumed: all secondary users

voluntarily contribute to sensing and fuse their detection results in every time slot

to a central controller (e.g., secondary base station), which makes a final decision.

However, sensing the primary band consumes a certain amount of energy and time

which may alternatively be diverted to data transmissions, and it may not be optimal

to have all users participate in sensing in every time slot, in order to guarantee a
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certain system performance. Moreover, with the emerging applications of mobile ad

hoc networks envisioned in civilian usage, the secondary users may be selfish and

not serve a common goal. If multiple secondary users occupy different sub-bands of

one primary user and can overhear the others’ sensing outcomes, they tend to take

advantage of the others and wait for the others to sense so as to reserve more time

for their own data transmission. Therefore, it is of great importance to study the

dynamic cooperative behaviors of selfish users in a competing environment while

boosting the system performance simultaneously.

In this chapter, we model cooperative spectrum sensing as an evolutionary

game, where the payoff is defined as the throughput of a secondary user. Evolution-

ary games have been previously applied to modeling networking problems, such as

resource sharing mechanism in P2P networks [AH07] and congestion control [WMd-

SeSa08] using behavioral experiments. In this chapter, we incorporate practical

multiuser effect and constraints into the spectrum sensing game. The secondary

users want to fulfill a common task, i.e., given a required detection probability to

protect the primary user from interference, sense the primary band collaboratively

for the sake of getting a high throughput by sharing the sensing cost. The users

who do not take part in cooperative sensing can overhear the sensing results and

have more time for their own data transmission. However, if no user spends time

in sensing the primary user, all of them may get a very low throughput. Therefore,

secondary users need to try different strategies at each time slot and learn the best

strategy from their strategic interactions using the methodology of understanding-

by-building.
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In order to study the evolution of secondary users’ strategies and answer the

question that how to cooperate in the evolutionary spectrum sensing game, we

propose to analyze the process of secondary users updating their strategy profile

with replicator dynamics equations [FL98], since a rational player should choose a

strategy more often if that strategy brings a relatively higher payoff. We derive

the evolutionarily stable strategy (ESS) of the game, and prove the convergence

to the ESS through analyzing the users’ behavior dynamics. Then we extend our

observation to a more general game with heterogeneous users, analyze the properties

of the ESSs, and develop a distributed learning algorithm so that the secondary users

approach the ESS only with their own payoff history. Simulation results show that

as the number of secondary users and the cost of sensing increases, the users tend

to have less incentive to contribute to cooperative sensing. However, in general they

can still achieve a higher average throughput in the spectrum sensing game than

that of the single-user sensing. Furthermore, using the proposed game can achieve

a higher total throughput than that of asking all users to contribute to sensing at

every time slot.

The remainder of this chapter is organized as follows. In Section 4.1, we present

the system model and formulate the multiuser cooperative spectrum sensing as a

game. In Section 4.2, we introduce the background on evolutionary game theory,

analyze the behavior dynamics and the ESS of the proposed game, and develop a

distributed learning algorithm for ESS. Simulation results are shown in Section 4.3.

Finally, we summarize the chapter in Section 4.4.
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4.1 System Model and Spectrum Sensing Game

4.1.1 Hypothesis of Channel Sensing

When a secondary user is sensing the licensed spectrum channel in a cognitive

radio network, the received signal r(t) from the detection has two hypotheses when

the primary user is present or absent, denoted by H1 and H0, respectively. Then,

r(t) can be written as

r(t) =





hs(t) + w(t), if H1;

w(t), if H0.

(4.1)

In (4.1), h is the gain of the channel from the primary user’s transmitter to

the secondary user’s receiver, which is assumed to be slow flat fading; s(t) is the

signal of the primary user, which is assumed to be an i.i.d. random process with

mean zero and variance σ2
s ; and w(t) is an additive white Gaussian noise (AWGN)

with mean zero and variance σ2
w. Here s(t) and w(t) are assumed to be mutually

independent.

Assume we use an energy detector to sense the licensed spectrum, then the

test statistics T (r) is defined as

T (r) =
1

N

N∑
t=1

|r(t)|2, (4.2)

where N is the number of collected samples.

The performance of licensed spectrum sensing is characterized by two proba-

bilities. The probability of detection, PD, represents the probability of detecting the

presence of primary user under hypothesis H1. The probability of false alarm, PF ,
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represents the probability of detecting the primary user’s presence under hypothesis

H0. The higher the PD, the better protection the primary user will receive; the

lower the PF , the more spectrum access the secondary user will obtain.

If the noise term w(t) is assumed to be circularly symmetric complex Gaus-

sian (CSCG), using central limit theorem the probability density function (PDF) of

the test statistics T (r) under H0 can be approximated by a Gaussian distribution

N (σ2
w, 1

N
σ4

w). Then, the probability of false alarm PF is given by [Poo94]

PF (λ) = Q
((

λ

σ2
w

− 1

)√
N

)
, (4.3)

where λ is the threshold of the energy detector, and Q(·) denotes the complementary

distribution function of the standard Gaussian, i.e.,

Q(x) =
1√
2π

∫ ∞

x

exp

(
−t2

2

)
dt.

Similarly, if we assume the primary signal is a complex PSK signal, then under

hypothesis H1, the PDF of T (r) can be approximated by a Gaussian distribution

N ((γ + 1)σ2
w, 1

N
(2γ + 1)σ4

w), where γ = |h|2σ2
s

σ2
w

denotes the received signal-to-noise

ratio (SNR) of the primary user under H1. Then, the probability of detection PD

can be approximated by [Poo94]

PD(λ) = Q
((

λ

σ2
w

− γ − 1

) √
N

2γ + 1

)
. (4.4)

Given a target detection probability P̄D, the threshold λ can be derived, and

the probability of false alarm PF can be further rewritten as

PF (P̄D, N, γ)
4
= Q

(√
2γ + 1Q−1(P̄D) +

√
Nγ

)
, (4.5)

where Q−1(·) denotes the inverse function of Q(·).
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4.1.2 Throughput of a Secondary User

When sensing the primary user’s activity, a secondary user cannot simultane-

ously perform data transmission. If we denote the sampling frequency by fs and

the frame duration by T , then the time duration for data transmission is given by

T − δ(N), where δ(N) = N
fs

represents the time spent in sensing.

When the primary user is absent and no false alarm is generated, the average

throughput of a secondary user is

RH0(N) =
T − δ(N)

T
(1− PF )CH0 , (4.6)

where CH0 represents the data rate of the secondary user under H0. When the pri-

mary user is present, and not detected by the secondary user, the average throughput

of a secondary user is

RH1(N) =
T − δ(N)

T
(1− PD)CH1 , (4.7)

where CH1 represents the data rate of the secondary user under H1.

If we denote PH0 as the probability that the primary user is absent, then the

total throughput of a secondary user is

R(N) = PH0RH0(N) + (1− PH0)RH1(N). (4.8)

In dynamic spectrum access, it is required that the secondary users’ operation

should not conflict or interfere with the primary users, and PD should be one in

the ideal case. According to (4.5), however, PF is then also equal to one, and the

total throughput of a secondary user (4.8) is zero, which is impractical. Hence, a
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primary user who allows secondary spectrum access usually predetermines a target

detection probability P̄D very close to one [LYZH07], under which we assume the

secondary spectrum access will be prohibited as a punishment. Then, from the

secondary user’s perspective, he/she wants to maximize his/her total throughput

(4.8), given that PD ≥ P̄D. Since the target detection probability P̄D is required by

the primary user to be very close to 1, and we usually have CH1 < CH0 due to the

interference from the primary user to the secondary user, the second term in (4.8)

is much smaller than the first term and can be omitted. Therefore, (4.8) can be

approximated by

R̃(N) = PH0RH0(N) = PH0

T − δ(N)

T
(1− PF )CH0 . (4.9)

We know from (4.5) that given a target detection probability P̄D, PF is a

decreasing function of N . As a secondary user reduces N (or δ(N)) in the hope of

having more time for data transmission, PF will increase. This indicates a tradeoff

for the secondary user to choose an optimal N that maximizes the throughput R̃(N).

In order to reduce both PF and N , i.e., keep low false alarm PF with a smaller N ,

a good choice for a secondary user is to cooperatively sense the spectrum with the

other secondary users in the same licensed band.

4.1.3 Spectrum Sensing Game

A diagram of a cognitive radio network where multiple secondary users are

allowed to access one licensed spectrum band is shown in Figure 4.1, where we

assume that the secondary users within each others’ transmission range can exchange
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Figure 4.1: System model

their sensory data about primary user detection. The cooperative spectrum sensing

scheme is illustrated in Figure 4.2. We assume that the entire licensed band is

divided into K sub-bands, and each secondary user operates exclusively in one of

the K sub-bands when the primary user is absent. Transmission time is slotted into

intervals of length T . Before each data transmission, the secondary users need to

sense the primary user’s activity. Since the primary user will operate in all the sub-

bands once becoming active, the secondary users within each other’s transmission

range can jointly sense the primary user’s presence, and exchange their sensing

results via a narrow-band signalling channel, as shown in Fig 4.2. In this way, each

of them can spend less time detecting while enjoying a low false alarm probability

PF via some decision fusion rule [CV86], and the spectrum sensing cost (δ(N)) can

be shared by whoever is willing to contribute (C).

However, according to their locations and quality of the received primary sig-
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Figure 4.2: Cooperative spectrum sensing

nal, it may not be optimal to have all secondary users participate in spectrum sensing

at every time slot, in order to guarantee certain system performance. Moreover, all

secondary users cooperating in sensing may be difficult, if the users do not serve a

common authority, and instead act selfishly to maximize their own throughput. In

this case, once a secondary user is able to overhear the detection results from the

other users, he/she can take advantage of that by refusing to take part in spectrum

sensing, called denying (D). Although each secondary user in the cognitive radio

network still achieves the same false alarm probability PF , the users who refuse to

join in cooperative sensing have more time for their own data transmission. The

secondary users get a very low throughput if no one senses the spectrum, in the

hope that someone else does the job.

Therefore, we can model the spectrum sensing as a noncooperative game.

The players of the game are the secondary users, denoted by S = {s1, · · · , sK}.
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Each player sk has the same action/strategy space, denoted by A = {C,D}, where

“C” represents pure strategy contribute and “D” represents pure strategy refuse

to contribute (denying). The payoff function is defined as the throughput of the

secondary user. Assume that secondary users contributing to cooperative sensing

forms a set, denoted by Sc = {s1, · · · , sJ}. Denote the false alarm probability

of the cooperative sensing among set Sc with fusion rule “RULE” and a target

detection probability P̄D by P Sc
F

4
= PF (P̄D, N, {γi}i∈Sc , RULE). Then the payoff for

a contributor sj ∈ Sc, can be defined as

ŨC,sj
= PH0

(
1− δ(N)

|Sc|T
)

(1− P Sc
F )Csj

, if |Sc| ∈ [1, K], (4.10)

where |Sc|, i.e., the cardinality of set Sc, represents the number of contributors, and

Csj
is the data rate for user sj under hypothesis H0. The payoff for a user si /∈ Sc,

who selects strategy D, is then given by

ŨD,si
= PH0(1− P Sc

F )Csi
, if |Sc| ∈ [1, K − 1], (4.11)

since si will not spend time sensing. If no secondary user contributes to sensing and

waits for the others to sense, i.e., |Sc| = 0, from (4.5), we know that limN→0 PF = 1,

especially for the low received SNR regime and high P̄D requirement. In this case,

the payoff for a denier becomes

ŨD,si
= 0, if |Sc| = 0. (4.12)

The decision fusion rule can be selected as the logical-OR rule, logical-AND

rule, or majority rule [LYZH07]. In this chapter, we use the majority rule to derive

the P Sc
F , though the other fusion rules could be similarly analyzed. Denote the
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detection and false alarm probability for a contributor sj ∈ Sc by PD,sj
and PF,sj

,

respectively. Then, under the majority rule we have the following

PD = Pr[at least half users in Sc report H1|H1], (4.13)

and

PF = Pr[at least half users in Sc report H1|H0], (4.14)

Hence, given a P̄D for set Sc, each individual user’s target detection probability P̄D,sj

can be obtained by solving the following equation

P̄D =

|Sc|∑

k=d 1+|Sc|
2

e

(|Sc|
k

)
P̄ k

D,sj
(1− P̄D,sj

)|Sc|−k, (4.15)

where we assume each contributor sj ∈ Sc takes equal responsibility in making the

final decision for fairness concern and therefore P̄D,sj
is identical for all sj’s. Then,

from (4.5) we can write PF,sj
as

PF,sj
= Q

(√
2γsj

+ 1Q−1(P̄D,sj
) +

√
N/|Sc|γsj

)
, (4.16)

and can further obtain P Sc
F by substituting (4.16) in (4.14).

4.2 Evolutionary Sensing Game and Strategy

Analysis

In this section, we first introduce the concept of ESS, and then use replicator

dynamics to model and analyze the behavior dynamics of the secondary users in the

sensing game.
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4.2.1 Evolutionarily Stable Strategy

Evolutionary game theory provides a good means to address the strategic

uncertainty that a player faces in a game by taking out-of-equilibrium behavior,

learning during the strategic interactions, and approaching a robust equilibrium

strategy. Such an equilibrium strategy concept widely adopted in evolutionary game

theory is the Evolutionarily Stable Strategy (ESS) [Smi82], which is “a strategy such

that, if all members of the population adopt it, then no mutant strategy could invade

the population under the influence of natural selection”. Let us define the expected

payoff as the individual fitness, and use π(p, p̂) to denote the payoff of an individual

using strategy p against another individual using strategy p̂. Then, we have the

following formal definition of an ESS [Smi82].

Definition 1 A strategy p∗ is an ESS if and only if, for all p 6= p∗,

1. π(p, p∗) ≤ π(p∗, p∗), (equilibrium condition)

2. if π(p, p∗) = π(p∗, p∗), π(p, p) < π(p∗, p) (stability condition).

Condition 1) states that p∗ is the best response strategy to itself, and is hence a

Nash equilibrium (NE). Condition 2) is interpreted as a stability condition. Suppose

that the incumbents play p∗, and a collection of mutants play p. Then conditions 1)

and 2) ensure that as long as the fraction of mutants playing p is not too large, the

average payoff to p will fall short of that to p∗. Since strategies with a higher fitness

value are expected to propagate faster in a population through strategic interactions,

evolution will cause the population using mutation strategy p to decrease until the

entire population uses strategy p∗.
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Since data transmission for each secondary user is continuous, the spectrum

sensing game is played repeatedly and evolves over time. Moreover, new secondary

users may join in the spectrum sensing game from time to time, and the existing

secondary users may even be unaware of their appearance and strategies. Hence,

a stable strategy which is robust to mutants using different strategies is especially

preferred. Therefore, we propose to use evolutionary game theory [Wei95] to analyze

the behavior dynamics of the players and further derive the ESS.

4.2.2 Evolution Dynamics of the Sensing Game

When a set of rational players are uncertain of each other’s actions and util-

ities, they will try different strategies in every play and learn from the strategic

interactions using the methodology of understanding-by-building. During the pro-

cess, the percentage (or population share) of players using a certain pure strategy

may change. Such a population evolution is characterized by replicator dynamics in

evolutionary game theory. Specifically, consider a population of homogeneous indi-

viduals with identical data rate Csi
and received primary SNR γi. The players adopt

the same set of pure strategies A. Since all players have the same Csi
and γi, payoffs

for playing a particular strategy depend only on the other strategies employed, not

on who is playing them. Therefore, all players have the same payoff function U .

At time t, let pai
(t) ≥ 0 be the number of individuals who are currently using pure

strategy ai ∈ A, and let p(t) =
∑

ai∈A pai
(t) > 0 be the total population. Then

the associated population state is defined as the vector x(t) = {xa1(t), · · · , x|A|(t)},
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where xai
(t) is defined as the population share xai

(t) = pai
(t)/p(t). By replica-

tor dynamics, at time t the evolution dynamics of xai
(t) is given by the following

differential equation [Wei95]

ẋai
= ε[Ū(ai, x−ai

)− Ū(x)]xai
, (4.17)

where Ū(ai, x−ai
) is the average payoff of the individuals using pure strategy ai, x−ai

is the set of population shares who use pure strategies other than ai, Ū(x) is the

average payoff of the whole population, and ε is some positive number representing

the time scale. The intuition behind (4.17) is as follows: if strategy ai results in a

higher payoff than the average level, the population share using ai will grow, and the

growth rate ẋai
/xai

is proportional to the difference between strategy ai’s current

payoff and the current average payoff in the entire population. By analogy, we can

view xai
(t) as the probability that one player adopts pure strategy ai, and x(t) can

be equivalently viewed as a mixed strategy for that player.

For the spectrum sensing game with heterogeneous players, whose γi and/or

Csi
are different from each other, denote the probability that user sj adopts strategy

h ∈ A at time t by xh,sj
(t), then the time evolution of xh,sj

(t) is governed by the

following dynamics equation [Wei95]

ẋh,sj
=

[
Ūsj

(h, x−sj
)− Ūsj

(x)
]
xh,sj

, (4.18)

where Ūsj
(h, x−sj

) is the average payoff for player sj using pure strategy h, and

Ūsj
(x) is sj’s average payoff using mixed strategy xsj

.
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4.2.3 Sensing Game with Homogeneous Players

A strategy is ESS if and only if it is asymptotically stable to the replicator dy-

namics [Wei95] [Sam98]. Therefore, we can derive the ESS of the proposed spectrum

sensing game by proving its asymptotical stability. In this subsection, we study the

ESS of games with homogeneous players, and will discuss the heterogeneous case in

the next.

As shown in Figure 4.1, players of the sensing game are secondary users within

each other’s transmission range. If the transmission range is small, we can approx-

imately view that all the received γsj
’s are very similar to each other. As the γsj

’s

are usually very low, in order to guarantee a low PF given a target P̄D, the number

of sampled signals N should be large. Under these assumptions, we can approxi-

mately view P Sc
F as the same for different Sc’s, denoted by P̂F . Further assume that

all users have the same data rate, i.e. Csi
= C, for all si ∈ S. Then, the payoff

functions defined in (4.10)-(4.12) become

UC(J) = U0

(
1− τ

J

)
, if J ∈ [1, K], (4.19)

and

UD(J) =





U0, if J ∈ [1, K − 1];

0, if J = 0,

(4.20)

where U0 = PH0(1− P̂F )C, J = |Sc|, and τ = δ(N)
T

.

As the secondary users are homogeneous players, (4.17) can be applied to the

special case as all players have the same evolution dynamics and equilibrium strategy.

Denote x as the probability that one secondary user contributes to spectrum sensing,
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then the average payoff for pure strategy C can be obtained as

ŪC(x) =
K−1∑
j=0

(
K − 1

j

)
xj(1− x)K−1−jUC(j + 1), (4.21)

where
(

K−1
j

)
xj(1− x)K−1−j is the probability that J + 1 users contributes to coop-

erative sensing. Similarly, the average payoff for pure strategy D is given by

ŪD(x) =
K−1∑
j=0

(
K − 1

j

)
xj(1− x)K−1−jUD(j). (4.22)

Since the average payoff Ū(x) = xŪC + (1− x)ŪD, then (4.17) becomes

ẋ = εx(1− x)
[
ŪC(x)− ŪD(x)

]
. (4.23)

In equilibrium x∗, no player will deviate from the optimal strategy, indicating ẋ∗ = 0,

and we obtain x∗ = 0, or 1, or the solution of Ū∗
C(x) = Ū∗

D(x).

Subtracting ŪD(x) from ŪC(x) we get

ŪC(x)− ŪD(x)

=
K−1∑

j=0

(
K − 1

j

)
xj(1− x)K−1−j [UC(j + 1)− UD(j)]

=
K−1∑

j=0

(
K − 1

j

)
xj(1− x)K−1−j [U0(1− τ

j + 1
)− U0] + Mt

=− U0τ

K−1∑

j=1

(
K − 1

j

)
xj(1− x)K−1−j 1

j + 1
+ Mt

=− τU0

xK

K−1∑

j=1

K!
(j + 1)!(K − j − 1)!

xj+1(1− x)K−j−1 + Mt

=− τU0

xK

K∑

j=2

(
K

j

)
xj(1− x)K−j + Mt

=
τU0

xK
[(1− x)K + Kx(1− x)K−1 − 1] + Mt

=
U0

K

[
τ(1− x)K + Kx(1− x)K−1 − τ

x

]
,

(4.24)
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with Mt = (1−x)K−1U0(1−τ). By using L’Hôpital’s rule, we know that limx→0 ŪC(x)−

ŪD(x) = limx→0
U0

K
[−Kτ(1 − x)K−1 + K(1 − x)K−1 − Kx(K − 1)(1 − x)K−2] =

U0(1 − τ) > 0. Thus, x = 0 is not a solution to equation ŪC(x) − ŪD(x) = 0, and

the solution satisfies

τ(1− x∗)K + Kx∗(1− x∗)K−1 − τ = 0. (4.25)

Next we show that the dynamics defined in (4.17) converge to the above-

mentioned equilibriums, which are asymptotically stable and hence the ESS. Note

that the variable in (4.17) is the probability that a user chooses strategy ai ∈ {C, D},

so we need to guarantee that xC(t) + xD(t) = 1 in the dynamic process. We show

this in the following proposition.

Proposition 1 The sum of the probability that a secondary user chooses strategy

“C” and “D” is equal to one in the replicator dynamics of a symmetric sensing

game.

Proof. Summing xai
in (4.17) over ai yields

ẋC + ẋD = ε[xCŪ(C, xD) + xDŪ(D, xC)− (xC + xD)Ū(x)]. (4.26)

Since Ū(x) = xCŪ(C, xD) + xDŪ(D, xC), and initially a user chooses xC + xD = 1,

(4.26) is reduced to ẋC + ẋD = 0. Therefore, xC(t)+xD(t) = 1 holds at any t during

the dynamic process. A similar conclusion also holds in an asymmetric game. N

In order to prove that the replicator dynamics converge to the equilibrium, we

first show that all non-equilibria strategies of the sensing game will be eliminated
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during the dynamic process. It suffices to prove that (4.17) is a myopic adjustment

dynamic [FL98].

Definition 2 A system is a myopic adjustment dynamic if

∑

h∈A
Ūsj

(h, x−sj
)ẋh,sj

≥ 0, ∀sj ∈ S. (4.27)

Inequality (4.27) indicates that the average utility of a player will not decrease in a

myopic adjustment dynamic system. We then prove that the dynamics (4.17) satisfy

Definition 2.

Proposition 2 The replicator dynamics (4.17) are myopic adjustment dynamics.

Proof. Substituting (4.17) into (4.27), we get

∑
ai∈A

ẋai
Ū(ai, x−ai

)

=
∑
ai∈A

εŪ(ai, x−ai
)[Ū(ai, x−ai

)− Ū(x)]xai

= ε
∑
ai∈A

xai
Ū2(ai, x−ai

)− ε
[ ∑

ai∈A
xai

Ū(ai, x−ai
)
]2

.

(4.28)

According to Jensen’s inequality, we know (4.28) is non-negative, which completes

the proof. In addition, we can show (4.27) also holds for a game with heterogeneous

players in a similar way. N

In the following theorem, we show that the replicator dynamics in (4.17) con-

verge to the ESS.

Theorem 1 Starting from any interior point x ∈ (0, 1), the replicator dynamics

defined in (4.17) converge to the ESS x∗.
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Proof. From the simplified dynamics (4.23), we know that the sign of ẋC(t) is

determined by the sign of ŪC(x) − ŪD(x), given x ∈ (0, 1) and ε > 0. ŪC(x) and

ŪD(x) are simplified as the following

ŪC(x) = U0 − U0(1− x)K−1τ − U0

K−1∑
j=1

(
K − 1

j

)
xj(1− x)K−j−1 τ

j + 1
,

ŪD(x) = U0 − U0(1− x)K−1.

(4.29)

Furthermore, the difference ŪC(x)− ŪD(x) is calculated in Appendix ?? as

ŪC(x)− ŪD(x) =
U0

K

[
τ(1− x)K + Kx(1− x)K−1 − τ

x

]
. (4.30)

According to different values of parameter τ , we prove the theorem in three different

cases.

Case I (τ = 1): from (4.29) we know ŪC(x) < ŪD(x), dx
dt

< 0, and the replicator

dynamics converge to x∗ = 0.

Case II (τ = 0): from (4.29) we have ŪC(x) > ŪD(x), dx
dt

> 0, and the

replicator dynamics converge to x∗ = 1.

Case III (0 < τ < 1): Define Φ(x) = ŪC(x) − ŪD(x) = U0

Kx
f(x), with f(x) =

τ(1− x)K + Kx(1− x)K−1− τ . When x → 0, using L’Hôpital’s rule, we know from

(4.30) that limx→0 Φ(x) = (1 − τ)U0 > 0. When x → 1, limx→1 Φ(x) = − τ
K

< 0.

Since Φ(0) > 0, Φ(1) < 0, and Φ(x) is a continuous function of x in (0, 1), then Φ(x)

must have at least one intersection with the x-axis, i.e., ∃x̃, such that Φ(x̃) = 0. If

there is only one such x̃, then we can infer that Φ(x) > 0 when x < x̃, and Φ(x) < 0

when x > x̃. Since Φ(x) has the same sign as f(x) when 0 < x < 1, it suffices

to prove that there exists only one solution in (0, 1) to equation f(x) = 0. Taking
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derivative of f(x) with respect to x, we get

df(x)

dx
= (1− x)K−2

[− (K − τ)x + (1− τ)
]
. (4.31)

When x = 1−τ
K−τ

, df(x)
dx

= 0. Observing (4.31) we find that f(x) is increasing when 0 <

x < 1−τ
K−τ

with f(0) = 0, while decreasing when 1−τ
K−τ

< x < 1 with f(1) = −τ < 0.

This means equation f(x) = 0 has only one root x∗ in (0, 1), which is the equilibrium

solved in (4.25). When 0 < x < x∗, f(x) > 0; and when x∗ < x < 1, f(x) < 0. Since

Φ(x) has the same sign as f(x), we can conclude that for 0 < x < x∗, Φ(x) > 0,

i.e., dx
dt

> 0; for x∗ < x < 1, Φ(x) < 0, i.e., dx
dt

< 0. Thus, the replicator dynamics

converge to the equilibrium x∗.

Therefore, we have proved the convergence of replicator dynamics to the ESS

x∗. N

4.2.4 Sensing Game with Heterogeneous Players

For games with heterogeneous players, it is generally very difficult to represent

Ūsj
(h, x−sj

) in a compact form, and directly obtain the ESS in closed-form by solving

(4.18). Therefore, we first analyze a two-user game to gain some insight, then

generalize the observation to a multi-user game.

When there are two secondary users in the cognitive radio network, i.e., S =

{s1, s2}, according to equations (4.10)-(4.12) we can write the payoff matrix as

in Table 4.1, where for simplicity we define A
4
= 1 − P Sc

F , with Sc = {s1, s2},

Bi
4
= 1− PF,si

, Di
4
= PH0Ci, and τ = δ(N)

T
.

Let us denote x1 and x2 as the probability that user 1 and user 2 take action
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Table 4.1: Payoff table of a two-user sensing game

C D

C D1A(1− τ
2
),D2A(1− τ

2
) D1B1(1− τ),D2B1

D D1B2,D2B2(1− τ) 0,0

“C”, respectively, then we have the expected payoff Ūs1(C, x2) when user 1 chooses

to contribute to sensing as

Ūs1(C, x2) = D1A(1− τ

2
)x2 + D1B1(1− τ)(1− x2), (4.32)

and the expected payoff Ūs1(x) as

Ūs1(x) = D1A(1− τ

2
)x1x2 + D1B1(1− τ)x1(1− x2) + D1B2(1− x1)x2. (4.33)

Thus we get the replicator dynamics equation of user 1 according to (4.18) as

ẋ1 = x1(1− x1)D1

[
B1(1− τ)− E1x2

]
, (4.34)

where E1 = B2 + B1(1− τ)−A(1− τ
2
). Similarly the replicator dynamics equation

of user 2 is written as

ẋ2 = x2(1− x2)D2

[
B2(1− τ)− E2x1

]
, (4.35)

where E2 = B1 + B2(1− τ)− A(1− τ
2
).

At equilibrium we know ẋ1 = 0 and ẋ2 = 0, then from (4.34) and (4.35) we

get five equilibria: (0, 0), (0, 1), (1, 0), (1, 1), and the mixed strategy equilibrium

(
B2(1−τ)

E2
, B1(1−τ)

E1

)
.
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According to [Cre03], if an equilibrium of the replicator dynamics equations is

a locally asymptotically stable point in a dynamic system, it is an ESS. So we can

view (4.34) and (4.35) as a nonlinear dynamic system and judge whether the five

equilibria are ESSs by analyzing the Jacobian matrix. By taking partial derivatives

of (4.34) and (4.35), we obtain the Jacobian matrix as

Jm =




D1(1− 2x1)E11 −x1(1− x1)D1E1

−x2(1− x2)D2E2 (1− 2x2)D2E22


 , (4.36)

where E11 = B1(1− τ)− E1x2, and E22 = B2(1− τ)− E2x1.

The asymptotical stability requires that det(Jm) > 0 and tr(Jm) <0. Substi-

tuting the five equilibria mentioned above to (4.36), we can conclude that

1. When A(1 − τ
2
) < B1, there is one ESS (1, 0), and the strategy profile user 1

and user 2 adopt converges to (C,D);

2. When A(1− τ
2
) < B2, there is one ESS (0, 1), and the strategy profile converges

to (D,C);

3. When A(1 − τ
2
) > B2 and A(1 − τ

2
) > B1, there is one ESS (1, 1), and the

strategy profiles converges to (C,C);

4. When A(1− τ
2
) < B1 and A(1− τ

2
) < B2, there are two ESSs (1, 0) and (0, 1),

and the strategy profile converges to (C,D) or (D,C) depending on different

initial strategy profiles.

In order to explain the above-mentioned conclusions and generalize them to a

multi-player game, we next analyze the properties of the mixed strategy equilibrium,
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although it is not an ESS. Let us take the derivative of x∗1 = B2(1−τ)
E2

with respect to

the performance of a detector (A, B2) and the sensing cost τ , then we get

∂x∗1
∂A

=
B2(1− τ/2)(1− τ)

E2
2

> 0, (4.37)

∂x∗1
∂B2

=
[A(1− τ/2)−B1](1− τ)

E2
2

< 0, (4.38)

and

∂x∗1
∂τ

=
(A/2−B1)B2

E2
2

< 0. (4.39)

Inequality (4.38) holds because A(1 − τ/2) − B1 < 0; otherwise x∗1 = B2(1−τ)
E2

> 1,

which is impractical. Inequality (4.39) holds because in practical applications, we

have PF,si
< 0.5, Bi = 1− PF,si

> 0.5, and A < 1; therefore, A
2

< Bi, and
∂x∗1
∂τ

< 0.

From (4.37) we know that when cooperative sensing brings a greater gain, i.e.,

as A increases, x∗1 (and x∗2) increases. This is why when A(1 − τ
2
) > Bi, i = 1, 2,

the strategy profile converges to (C,C). From (4.38) we find that the incentive of

a secondary user si contributing to cooperative sensing decreases as the other user

sj’s detection performance increases. This is because when user si learns through

repeated interactions that sj has a better Bj, si tends not to sense the spectrum

and enjoys a free-ride. Then sj has to sense the spectrum; otherwise, he is at the

risk of having no one sense and receiving a very low expected payoff. That is why

when A(1− τ
2
) < B1 (or A(1− τ

2
) < B2), the strategy profile converges to (C,D) (or

(D,C)). When the sensing cost (τ) becomes larger, the secondary users will be more

reluctant to contribute to cooperative sensing and x∗1 decreases, as shown in (4.39).

From the above-mentioned observation, we can infer that if some user si has

a better detection performance Bi, the other users tend to take advantage of si. If

79



there are more than two users in the sensing game, the strategy of the users with

worse Bi’s (and γi’s) will converge to “D”. Using replicator dynamics, users with

better detection performance tend to contribute to spectrum sensing, because they

are aware of the low throughput if no one senses the spectrum. Similarly, if the

secondary users have different data rates, the user with a lower rate Csj
tends to

take advantage of those with higher rates, since the latter suffer relatively heavier

losses if no one contributes to sensing and they have to become more active in

sensing.

The work in [PL07] discussed how to select a proper subset of secondary users

in cooperative sensing so as to optimize detection performance. However, their

approach assumes that the information about the received SNR’s (γi’s) is available

at the secondary base station. In our evolutionary game framework, the secondary

users can learn the ESS by using replicator dynamics only with their own payoff

history. Therefore, it is suitable for distributed implementation when there exists no

secondary base station and the secondary users behave selfishly. In the next section

we propose a distributed learning algorithm and further justify the convergence with

computer simulations.

4.2.5 Learning Algorithm for ESS

In the above cooperative sensing games with multiple players, we have shown

that the ESS is solvable. However, solving the equilibrium requires the knowledge

of utility function as well as exchange of private information (e.g., γsj
and Csj

)
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and strategies adopted by the other users. This results in a lot of communication

overhead. Therefore, a distributed learning algorithm that gradually converges to

the ESS without too much information exchange is preferred.

From (4.18), we can derive the strategy adjustment for the secondary user as

follows. Denote the pure strategy taken by user sj at time t by Asj
(t). Define an

indicator function 1h
sj

(t) as

1h
sj

(t) =





1, if Asj
(t) = h;

0, if Asj
(t) 6= h.

(4.40)

At some interval mT , we can approximate Ūsj
(h, x−sj

) by

Ūsj
(h, x−sj

)
.
=

∑
0≤t≤mT Ũsj

(Asj
(t), A−sj

(t))1h
sj

(t)∑
0≤t≤mT 1h

sj
(t)

, (4.41)

where Ũsj
(Asj

(t), A−sj
(t)) is the payoff value for sj as determined by (4.10)-(4.12).

Similarly, Ūsj
(x) can be approximated by

Ūsj
(x)

.
=

1

m

∑
0≤t≤mT

Ũsj
(Asj

(t), A−sj
(t)). (4.42)

Then, the derivative ẋh,sj
(mT ) can be approximated by substituting the estimations

(4.41) and (4.42) into (4.18). Therefore, the probability of user sj taking action h

can be adjusted by

xh,sj
((m + 1)T ) = xh,sj

(mT ) + ηsj
ẋh,sj

(mT ) , (4.43)

with ηsj
being the step size of adjustment chosen by sj.

Eq. (4.43) can be viewed as a discrete-time replicator dynamic system. It

has been shown in [HS74] that if a steady state is hyperbolic and asymptotically
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stable under the continuous-time dynamics, then it is asymptotically stable for suf-

ficiently small time periods in corresponding discrete-time dynamics. Since the ESS

is the asymptotically stable point in the continuous-time replicator dynamics and

also hyperbolic [FL98], if a player knows precise information about ẋh,sj
, adapting

strategies according to (4.43) can converge to an ESS. With the learning algorithm,

users will try different strategies in every time slot, accumulate information about

the average payoff values based on (4.41) and (4.42), calculate the probability change

of some strategy using (4.18), and adapt their actions to an equilibrium.

By summarizing the above learning algorithm and analysis in this section, we

can arrive at the following cooperation strategy in the de-centralized cooperative

spectrum sensing:

Cooperation Strategy in Cooperative Spectrum Sensing:

Denote the probability of contributing to sensing for user si ∈ S by xc,si
, then

the following strategy will be used by si:

• if starting with a high xc,si
, si will rely more on the others and reduce xc,si

until further reduction of xc,si
decreases his throughput or xc,si

approaches 0.

• if starting with a low xc,si
, si will gradually increase xc,si

until further increase

of xc,si
decreases his throughput or xc,si

approaches 1.

• si shall reduce xc,si
by taking advantage of those users with better detection

performance or higher data rates.

• si shall increase xc,si
if cooperation with more users can bring a better detection

performance than the case of single-user sensing without cooperation.
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4.3 Simulation Studies

The parameters used in the simulation are as follows. We assume that the

primary signal is a baseband QPSK modulated signal, the sampling frequency is

fs = 1MHz, and the frame duration is T = 20 ms. The probability that the primary

user is inactive is set as PH0 = 0.9, and the required target detection probability

P̄D is 0.95. The noise is assumed to be a zero-mean CSCG process. The distance

between the cognitive radio network and the primary base station is very large, so

the received γsj
’s are in the low SNR regime, with an average value of −12 dB.

4.3.1 Sensing Game with Homogeneous Players

We first illustrate the ESS of the secondary users in a homogeneous K-user

sensing game as in Section 4.2.3, where the data rate is C = 1 Mbps. In Figure

4.3(a), we show the equilibrium probability of being a contributor x∗. The x-axis

represents τ = δ(N)
T

, the ratio of sensing time duration over the frame duration.

From Figure 4.3(a), we can see that x∗ decreases as τ increases. For the same

τ , x∗ decreases as the number of secondary users increases. This indicates that the

incentive of contributing to cooperative sensing drops as the cost of sensing increases

and more users exist in the network. This is because the players tend to wait for

someone else to sense the spectrum and can then enjoy a free ride, when they are

faced with a high sensing cost and more counterpart players. In Figure 4.3(b), we

show the average throughput per user when all users adopt the equilibrium strategy.

We see that there is a tradeoff between the cost of sensing and the throughput for an
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Figure 4.3: ESS and average throughput vs. τ .
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arbitrary number of users, and the optimal value of τ is around 0.25. For comparison,

we also plot the throughput for a single-user sensing (dotted line “single”), where

the optimal value of τ is around 0.15. Although the cost of sensing increases, we

see that as more users share the sensing cost, the average throughput per user still

increases, and the average throughput values for the cooperative sensing game are

higher than that of the single-user sensing case.

4.3.2 Convergence of the Dynamics

In Figure 4.4, we show the replicator dynamics of the game with homogeneous

users, where τ = 0.5. We observe in Figure 4.4(a) that starting from a high initial

probability of cooperation, all users gradually reduce their degree of cooperation,

because being a free-rider more often saves more time for one’s own data transmission

and brings a higher throughput. However, too low a degree of cooperation greatly

increases the chance of having no user contribute to sensing, so the users become

more cooperative starting from a low initial probability of cooperation as shown in

Figure 4.4(b). It takes less than 20 iterations to attain the equilibrium by choosing

a proper step size ηsi
= 3.

In Figure 4.5, we show the replicator dynamics for the game with three het-

erogeneous players, using the learning algorithm discussed in Section 4.2.5. We

choose τ = 0.5, γ1 = −14 dB, γ2 = −10 dB, and γ3 = −10 dB. As expected,

starting from a low initial probability of cooperation, the users tend to increase the

degree of cooperation. During the iterations, the users with a worse γi (user 1) learn
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Figure 4.4: Behavior dynamics of a homogeneous K-user sensing game
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Figure 4.5: Behavior dynamics of a heterogeneous 3-user sensing game

that listening to the detection results from the users with a better γi can bring a

higher throughput. Hence, user 1’s strategy converges to “D” in the long run, while

the users with better detection performance (user 2 and user 3) have to sense the

spectrum to guarantee their own throughput.

4.3.3 Comparison of ESS and Full Cooperation

In Figure 4.6, we compare the total throughput of a 3-user sensing game

using their ESS and the total throughput when the users always participate in

cooperative sensing and share the sensing cost, i.e., xsi
= 1. In the first four groups

of comparison we assume a homogeneous setting, where γi of each user takes value

from {−13,−14,−15,−16} dB, respectively. In the last four groups, a heterogeneous

setting is assumed, where γ1 equals to {−12,−13,−14,−15} dB, respectively, and

γ2 and γ3 are kept the same as in the homogeneous setting. We find in the figure that
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Figure 4.6: Comparison of ESS and full cooperation

using ESS has better performance than all secondary users cooperating in sensing

at every time slot. This is because under ESS, the users can take turns to jointly

complete the common task, and on average contribute less time to sensing and enjoy

a higher throughput. This indicates that in order to guarantee a certain detection

performance, it is not necessary to force all users to contribute in every time slot,

and ESS can achieve a satisfying system performance even when there exist selfish

users.

4.4 Summary

Cooperative spectrum sensing with multiple secondary users has been shown

to achieve a better detection performance than single-user sensing without coop-

eration. However, how to collaborate in cooperative spectrum sensing over de-

centralized cognitive radio networks is still an open problem, as selfish users are
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not willing to contribute their energy/time to sensing. In this chapter, we propose

an evolutionary game-theoretic framework to develop the best cooperation strategy

for cooperative sensing with selfish users. Using replicator dynamics, users can try

different strategies and learn a better strategy through strategic interactions. We

study the behavior dynamics of secondary users, derive and analyze the property

of the ESSs, and further propose a distributed learning algorithm that aids the sec-

ondary users approach the ESSs only with their own payoff history. From simulation

results we find that the proposed game has a better performance than having all

secondary users sense at every time slot, in terms of total throughput. Moreover,

the average throughput per user in the sensing game is higher than in the single-user

sensing case without user cooperation.
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Chapter 5

Stackelberg Game for Distributed

Resource Allocation in

Cooperative Networks

Recently, cooperative communications [LTW04] have gained much attention

as an emerging transmit strategy for future wireless networks. The basic idea is that

relay nodes can act as a virtual antenna array to help the source node forward its

information to the destination. In this way, cooperative communication efficiently

takes advantage of the broadcasting nature of wireless networks. Besides, it exploits

the inherent spatial and multiuser diversities.

In order to improve the performance of cooperative transmissions, it is very

important to design efficient resource allocation, such as relay selection, power con-

trol, and reply deployment. However, most existing works described in Chapter 2

90



solve resource allocation problems in cooperative communications by means of a

centralized fashion. Such schemes require that complete and precise channel state

information (CSI) should be available in order to optimize the system performance,

which are generally neither scalable nor robust to channel estimation errors. This

fact motivates the research on distributed resource allocation without requiring CSI.

For distributed resource allocation, there are two main questions over multiuser co-

operative wireless networks: First, among all the distributed nodes, who can help

relay and improve the source node’s link quality better; Second, for the selected relay

nodes, how much power they need to transmit. Moreover, in multiuser cooperative

wireless networks with selfish nodes, different nodes may belong to a different au-

thorities. Therefore, a mechanism of reimbursement to relay nodes is needed such

that relay nodes can earn benefits from spending their own transmission power in

helping the source node forward its information. On the other hand, if the source

node reimburses relay nodes for their help, it needs to choose the most beneficial

relay nodes.

According to such characteristics, in this chapter, we employ a Stackelberg

game [FT93] to jointly consider the benefits of the source node and relay nodes in

cooperative communications. The game is divided into two levels. The source node

plays the buyer-level game, since it aims to achieve the best performance with the

relay nodes’ help with the least reimbursements to them. We analyze how many and

which relay nodes are selected by the source node to participate in relaying after

they announce their optimal prices. In addition, we optimize how much service (such

as power) the source node will buy from each relay node. On the other hand, each
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relay node plays the seller-level game, in which it aims to earn the payment that

not only covers its forwarding cost but also gains as many extra profits as possible.

Therefore, the relay node needs to set the optimal price per unit for the service, so

as to maximize its own benefit. To study the game outcomes, we analyze several

properties of the proposed game. Then, we develop a distributed algorithm that

can converge to the optimal game equilibrium.

The remainder of the chapter is organized as follows: In Section 5.1, we de-

scribe the system model, and formulate the cooperative optimization as a Stackel-

berg game. We construct the distributed implementation of multiuser cooperation

transmissions and provide the solutions in Section 5.2. Simulation results are shown

in Section 5.3. Finally, we present the summary in Section 5.4.

5.1 System Description

In this section, we first derive the expression of the maximal achievable rate in

cooperative transmission with relay nodes’ help. Then, we formulate the optimiza-

tion problem of relay selection and power control using a Stackelberg game.

5.1.1 System Model

In the sequel, we employ the amplify-and-forward (AF) cooperation proto-

col [LTW04] as our system model; other cooperation protocols [LTW04] can be

considered in a similar way. The system diagrams are shown in Figure 5.1, in which

there are in total N relay nodes, one source node s and one destination node d. The
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Figure 5.1: System diagrams.
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cooperative transmission consists of two phases.

In Phase 1, source node s broadcasts its information to both destination node

d and each relay node ri. The received signals ys,d and ys,ri
at node d and node ri

can be expressed as

ys,d =
√

PsGs,dx + ηs,d, (5.1)

and

ys,ri
=

√
PsGs,ri

x + ηs,ri
, (5.2)

where Ps represents the transmit power at node s, x is the broadcast information

symbol with unit energy from node s to node d and node ri, Gs,d and Gs,ri
are the

channel gains from node s to node d and node ri respectively, and ηs,d and ηs,ri
are

the additive white Gaussian noises (AWGN). Without loss of generality, we assume

that the noise power is the same for all the links, denoted by σ2. We also assume

the channels are stable over each transmission frame.

Without the relay nodes’ help, the signal-to-noise ratio (SNR) that results

from the direct transmission from node s to node d can be expressed by

Γs,d =
PsGs,d

σ2
, (5.3)

and the rate of the direct transmission is

Rs,d = W log2

(
1 +

Γs,d

Γ

)
, (5.4)

where W is the bandwidth for transmission, and Γ is a constant representing the

capacity gap.
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In Phase 2, relay node ri amplifies ys,ri
and forwards it to destination d with

transmitted power Pri
. The received signal at destination node d is

yri,d =
√

Pri
Gri,dxri,d + ηri,d, (5.5)

where

xri,d =
ys,ri

|ys,ri
| (5.6)

is the transmitted signal from node ri to node d that is normalized to have unit

energy, Gri,d is the channel gain from node ri to node d, and ηri,d is the received

noise. Substituting (5.2) into (5.6), we can rewrite (5.5) as

Yri,d =

√
Pri

Gri,d(
√

PsGs,ri
X + ηs,ri

)√
PsGs,ri

+ σ2
+ ηri,d. (5.7)

Using (5.7), the relayed SNR for source node s, which is helped by relay node ri, is

given by:

Γs,ri,d =
Pri

PsGri,dGs,ri

σ2(Pri
Gri,d + PsGs,ri

+ σ2)
. (5.8)

Therefore, by (5.4) and (5.8), we have the rate at the output of the maximal-ratio

combining (MRC) detector with one relay node ri helping as

Rs,ri,d =
W

2
log2

(
1 +

Γs,d + Γs,ri,d

Γ

)
. (5.9)

If the relay nodes available to help source node s at a certain time constitute a set,

denoted by L = {r1, . . . , rN}, then we have

Rs,r,d = γLW log2


1 +

Γs,d +
∑

ri∈L

Γs,ri,d

Γ


 , (5.10)

where γL denotes a bandwidth factor.
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According to different network applications, γL can have different definitions.

For the energy-constrained networks, γL is set to 1. For the network with a limited

bandwidth, the bandwidth should be divided for the source node and relay nodes,

and γL depends on the number of relay nodes that actually help forwarding, since not

all the relay nodes will contribute to a better performance for the source node. If N ′

out of N relay nodes are selected by the source node, N ′ ≤ N , then γL = 1
N ′+1

.1We

will study the energy constrained scenario first, then we show the effects of the

varying γL in the simulation part.

5.1.2 Problem Formulation

To exploit the cooperative diversity for multiuser systems, from (5.10), two

fundamental questions on resource allocation need to be answered: First, which relay

nodes will be included; Second, what is the optimal power Pri
. However, solving

these issues in a centralized manner requires accurate and complete channel-state

information (CSI), bringing considerable overheads and signaling of information

about channel estimations. In contrast, the distributed resource allocation only

needs local knowledge about channel information. Moreover, in general, nodes in

multiuser cooperative wireless networks may belong to different authorities and act

selfishly. Incentives need to be provided by the source node to the relay nodes for

relaying the information. Consequently, the source node needs to choose the most

beneficial relay nodes. According to the behaviors of the source node and the relay

1The source node can know the number of available relay nodes by broadcasting its signal and

listening to the relay nodes’ feedback on whether to help forward the source node’s information.
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nodes, we employ a distributed resource allocation using a Stackelberg-game based

scheme as the following formulated problem.

(1) Source Node/Buyer: The source node s can be modeled as a buyer

and aims to obtain most benefits at least possible payments. The utility function of

source node s can be defined as

Us = aRs,r,d −M, (5.11)

where Rs,r,d denotes the achievable rate with the relay nodes’ help, a denotes the

gain per unit of rate at the MRC output, and

M =
∑
ri∈L

piPri
= p1Pr1 + p2Pr2 + · · ·+ pNPrN

(5.12)

represents the total payments paid by source node s to the relay nodes. In (5.12),

pi represents the price per unit of power selling from relay node ri to source node s,

and Pri
denotes how much power node s will buy from node ri.

The relay nodes helping source node s constitute a set, still denoted by L,

then the optimization problem for source node s, or the buyer-level game can be

formulated as:

max
{Pri}

Us = aRs,r,d −M, s.t. Pri
≥ 0, ri ∈ L. (5.13)

(2) Relay Node/Seller: Each relay node ri can be seen as a seller and aims

to not only earn the payment which covers its forwarding cost but also gain as many

extra profits as possible. We introduce a parameter ci, the cost of power for relaying

data, in our formulation. Then, relay node ri’s utility function can be defined as

Uri
= piPri

− ciPri
= (pi − ci)Pri

, (5.14)
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where Pri
is the source node’s power consumption by optimizing Us described in

(5.13). The optimization problem for relay node ri, or the seller-level game is:

max
pi>0

Uri
= (pi − ci)Pri

, ∀i. (5.15)

The choice of the optimal price pi is not only affected by each relay node’s own

channel conditions to the source node and the destination node, but also by the other

relay nodes’ prices. This is because the seller-level game is non-cooperative, and the

relay nodes compete to get selected by source node s. If a certain relay node rj

asks such a high price that makes it less beneficial than the other relay nodes to

source node s, then source node s will buy less from relay node rj or even discard

it. On the other hand, if the price is too low, the profit obtained by (5.14) will be

unnecessarily low. Overall, there is a tradeoff for setting the price. If under the

optimal price, denoted by p∗i , the resulting utility of relay node ri is negative, i.e.,

U∗
ri
≤ 0, then node ri will quit the seller-level game since it can not cover the basic

cost by selling power to the source node.

It is worth noticing that the only signaling required to exchange between the

source node and the relay nodes are the price pi and the information about how much

power Pri
to buy. Consequently, the proposed two-level game-theoretic approach can

be implemented in a distributed way. The outcome of the proposed games will be

shown in detail in the following section.
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5.2 Analysis of the Proposed Games

In this section, we first obtain closed-form solutions to the outcomes of the

proposed games. Then, we prove that these solutions are the global optima, and

further show that the set of solutions is a unique fixed point and the proposed

game converges to that point. Finally, we compare the performance of the proposed

distributed scheme to that of a centralized scheme.

5.2.1 Buyer-Level Game for the Source Node

Relay Selection

As relay nodes are located in different places and ask different prices for helping

the source node, it may not be good for source node s to choose all relay nodes,

especially those with bad channel conditions but asking a high price. Moreover, if

the source node will exclude the less beneficial relay nodes sooner or later during

the buyer-level game, it is better to reject them at the beginning so as to reduce the

signaling overhead. Because source node s aims at maximizing utility Us through

buying an optimal amount of power Pri
, then a natural way of relay selection for

source node s is to observe how Us varies with Pri
, i.e., observe the sign of ∂Us

∂Pri
.

Since source node s gradually increases the amount of power bought from the relay

nodes to approach the optimum, by observing the sign of ∂Us

∂Pri
when Pri

= 0, node

s can exclude (or select) those less (or more) beneficial relay nodes.

From the definition in (5.11), we know

∂Us

∂Pri

= a
∂Rs,r,d

∂Pri

− pi, i = 1, · · · , N. (5.16)
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When Prj
= 0, j = 1, · · · , N , if pi satisfies pi < a

∂Rs,r,d

∂Pri
for relay node ri, then we

have ∂Us

∂Pri
> 0, meaning the source node will obtain a larger Us by increasing Pri

.

Otherwise, relay node ri should be excluded.

Then a question is how each relay node ri asks its price pi at the beginning.

Since in a distributed implementation, each relay node does not know the other

relay nodes’ prices, it is natural to first tentatively set pi = ci. If the initial price

pi is lower than ci, utility Uri
will be negative and hence impractical; on the other

hand, if the initial price is greater than ci, relay node ri may be at the risk of

being excluded by the source node. If under these lowest initial prices, the source

node would choose not to buy any power from some relay node ri, then ri will not

participate in the seller-level game because Uri
= 0.

To summarize the analysis above, the relay rejection criteria of the source

node are as follows. Assume the total number of the relay nodes is N . At first the

source node tentatively chooses Pri
= 0, i = 1, · · · , N , and all the relay nodes set

their initial prices as pi = ci,∀i. For relay node rj, if cj ≥ (a
∂Rs,r,d

∂Prj
), then rj is

rejected by the source node with correspondingly Prj
= 0. It will be shown later

that this rejection is fixed and will not change after the game is played.

With the proposed relay rejection criteria, source node s can exclude the least

beneficial relay nodes at the very beginning. In this way, the signaling overhead can

be further reduced, because the source node and the rejected relay nodes no longer

need to exchange their information about the purchased power and prices.

Optimal Power Allocation for the Selected Relay Nodes

After the selection, for the selected relay nodes that constitute a set Lh =
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{r1, · · · , rN ′}, we can solve the optimal power Pri
by taking derivative of Us in

(5.11) with respect to Pri
as

∂Us

∂Pri

= a
∂Rs,r,d

∂Pri

− pi = 0, ri ∈ Lh. (5.17)

For simplicity, define C = 1 +
Γs,d

Γ
, W ′ = aW

ln 2
. By (5.10), we get the first term

of Us as

aRs,r,d = aW log2


C +

1

Γ

∑
ri∈Lh

Γs,ri,d


 = W ′ ln

(
1 + ∆SNR

′
tot

)
+ W ′ ln C,

(5.18)

where

∆SNR
′
tot =

∑
ri∈Lh

Γ
′
s,ri,d

=
1

ΓC

∑
ri∈Lh

Γs,ri,d, (5.19)

and

Γ
′
s,ri,d

=
Γs,ri,d

ΓC
=

Ai

1 + Bi

Pri

=
AiPri

Pri
+ Bi

, (5.20)

with Ai =
PsGs,ri

(Γσ2+PsGs,d)
and Bi =

PsGs,ri+σ2

Gri,d
.

Substituting (5.12) and (5.18) into (5.17), we have

W ′
(

1 +
∑

rk∈Lh

AkPrk

Prk
+Bk

) =
pi

AiBi

(Pri
+ Bi)

2 . (5.21)

Since the left-hand side (LHS) of (5.21) is the same for any relay node on the right-

hand side (RHS), by equating the RHS of (5.21) for relay nodes ri and rj, we get

Prj
=

√
piAjBj

pjAiBi

(Pri
+ Bi)−Bj. (5.22)

Substituting the above Prj
into (5.20) and simplifying, we have

Γ′s,rj ,d =
Aj

1 +
Bj

Prj

= Aj −
√

pjAiBi

piAjBj

AjBj

(Pri
+ Bi)

, (5.23)
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then (5.19) can be reorganized as

∆SNR′
tot =

[
A1 −

√
p1AiBi

piA1B1

A1B1

(Pri + Bi)

]
+ · · ·+

[
Ai − AiBi

Pri + Bi

]
+ · · ·

+

[
AN ′ −

√
pN ′AiBi

piAN ′BN ′

AN ′BN ′

(Pri + Bi)

]
=

∑

rj∈Lh

Aj −
√

AiBi

pi

1
Pri + Bi

∑

rj∈Lh

√
pjAjBj .

(5.24)

Substituting (5.24) into (5.21), after some manipulations, we can have a quadratic

equation of Pri
. The optimal power consumption is

P ∗
ri

=

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
−Bi, (5.25)

where X = 1 +
∑

rj∈Lh
Aj and Y =

∑
rj∈Lh

√
pjAjBj .

The solution in (5.25) can also be verified by the Karush-Kuhn-Tucker (KKT)

condition [Bar93] to be the global optimum to problem (5.13), since the Us function

is concave in {Pri
}N

i=1 and the supporting set {Pri
|Pri

≥ 0, i = 1, · · · , N} is convex.

5.2.2 Seller-Level Game for the Relay Nodes

Substituting (5.25) into (5.15), we have

max
{pi}>0

Uri
= (pi − ci)P

∗
ri
(p1, . . . , pi, . . . , pN ′). (5.26)

We can note that (5.26) is a noncooperative game by the relay nodes, and there

exists a tradeoff between the price pi and the relay node’s utility Uri
. If relay node

ri in good channel conditions asks for a relatively low price pi at first, source node

s will buy more power from relay node ri and Uri
will increase as pi grows. When

pi keeps growing and exceeds a certain value, it is no longer beneficial for source

s to buy power from relay ri, even though relay ri may be in very good channel

conditions. In this way, Pri
will shrink and hence results in a decrement of Uri

.
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Therefore, there is an optimal price for each relay node to ask for, depending on

the relay node’s channel conditions. Besides, the optimal price is also affected by

the other relay nodes’ prices since the source node only chooses the most beneficial

relay nodes.

From the analysis above, by taking derivative of Uri
to pi and equating it to

zero, we have

∂Uri

∂pi

= P ∗
ri

+ (pi − ci)
∂P ∗

ri

∂pi

= 0, ri ∈ Lh. (5.27)

Solving the above equations of pi, we denote the optimal prices as

p∗i = p∗i (σ
2, {Gs,ri

}, {Gri,d}), ri ∈ Lh. (5.28)

In Section 5.2.1 we assume that the source node transmits with a constant

power. However, if the source node has a lower transmission power, it is willing to

buy more power from the relay nodes in order to obtain a high data rate, and hence

the relay nodes can ask higher prices for helping the source node. On the other

hand, if the source has a higher transmission power, it will buy less power from the

relay nodes and also pay less to them.

5.2.3 Existence of the Equilibrium

In this subsection, we prove that the solution P ∗
ri

in (5.25) and p∗i in (5.28) is

the Stackelberg Equilibrium (SE) for the proposed game, and show the conditions

for the SE to be optimal by the following properties, proposition, and theorem.

We first define the SE of the proposed game as follows.

Definition 1: P SE
ri

and pSE
i are the SE of the proposed game, if for every
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ri ∈ L, when pi is fixed,

Us({P SE
ri
}) = sup

{Pri}≥0

Us({Pri
}),∀ri ∈ L, (5.29)

and for every ri ∈ Lh, when Pri
is fixed,

Uri
(pSE

i ) = sup
pi>ci

Uri
(pi), ∀ri ∈ Lh. (5.30)

Then, we show that the optimizer P ∗
ri

of problem (5.13) can be solved by

equating ∂Us

∂Pri
to zero by the following property.

Property 1: The utility function Us of the source node is jointly concave in

{Pri
}N

i=1, with Pri
≥ 0, and pi is fixed, ∀i.

Proof. Taking the second order derivatives of the source node’s utility Us, we can

get

∂2Us

∂P 2
ri

= − W ′
(

1 +
N∑

k=1

AkPrk
Prk

+Bk

)2

[
AiBi

(Pri + Bi)
2

]2

− 2
W ′

(
1 +

N∑
k=1

AkPrk
Prk

+Bk

) AiBi

(Pri + Bi)
3 , (5.31)

and

∂2Us

∂Pri∂Prj

= − W ′
(

1 +
N∑

k=1

AkPrk
Prk

+Bk

)2 ×
AiBi

(Pri + Bi)
2

AjBj(
Prj + Bj

)2 . (5.32)

For each relay, by definition, W ′ > 0, Ai > 0, Bi > 0, and Pri
≥ 0. As a result,

∂2Us

∂P 2
ri

< 0 and ∂2Us

∂Pri∂Prj
< 0. It is straightforward to verify that ∂2Us

∂P 2
ri

∂2Us

∂P 2
rj

−( ∂2Us

∂Pri∂Prj
)2 >

0, ∀i 6= j. Moreover, Us is continuous in Pri
, so when Pri

≥ 0, Us is strictly concave

in each Pri
, ∀i, and jointly concave over {Pri

}N
i=1 as well.

N

Due to Property 1, P ∗
ri

in (5.25) is the global optimum that maximizes the

source node’s utility Us. Therefore, P ∗
ri

satisfies condition (5.29) and is the SE P SE
ri

.
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Moreover, in practical implementation of the game, the source node can find the

optimal power amount by gradually increasing the purchased power from each relay

node until Us reaches its maximum without knowing CSI.

In the following two properties, we show that the relay nodes can not infinitely

increase Uri
by asking arbitrarily high prices.

Property 2: The optimal power consumption P ∗
ri

for relay node ri is decreasing

with its price pi, when other relay nodes’ prices are fixed.

Proof. Taking the first order derivative of the optimal power consumption P ∗
ri
,

we have

∂P ∗
ri

∂pi
=

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
×

[
− 1

2pi

(
1−

√
piAiBi√

Y 2 + 4XW ′

)]
< 0. (5.33)

So P ∗
ri

is decreasing with pi. This is because when some relay node individually

increases its price while the others keep the same prices as before, the source node

will buy less from that relay node. N

Consequently, there is a tradeoff for each relay node to ask a proper price, and

we can solve the optimal price by equating
∂Uri

∂pi
= 0, the reason of which is shown

as follows.

Property 3: The utility function Uri
of each relay node is concave in its own

price pi, when its power consumption is the optimized purchase amount from the

source node as calculated in (5.25), and the other relay nodes’ prices are fixed.

Proof. P ∗
ri

is a continuous function of pi, so Uri
is continuous in pi too. Taking
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derivatives of the relay node’s utility Uri
results in

∂Uri

∂pi
= −Bi +

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
×

[
1− pi − ci

2pi

(
1−

√
piAiBi√

Y 2 + 4XW ′

)]
,

(5.34)

and further

∂2Uri

∂p2
i

=

√
AiBi

pi

Yi

2X

(
1−

√
piAiBi√

Y 2 + 4XW ′

)(−pi − 3ci

4p2
i

)
+

√
AiBi

pi

8Xp2
i

(√
Y 2 + 4XW ′

)3

×
[(

Y 2
i + 2Yi

√
piAiBi + 4XW ′

)2
(−pi − 3ci) + piAiBi

×
(
Y 2

i + 2Yi

√
piAiBi

)
(−pi − 3ci) + piAiBi4XW ′ (−4ci)

]
,

(5.35)

where Yi = Y −√piAiBi. Since Ai, Bi, pi, Yi, ci, X, and W ′ > 0, we have
∂2Uri

∂p2
i

< 0.

So Uri
is concave with respect to pi. N

Based on Properties 1-3, we can show that the relay rejection criteria stated

in Section 5.2.1 help the source node reject the least beneficial relay nodes in the

following proposition.

Proposition 1: The relay rejection criteria described in Section 5.2.1 is neces-

sary and sufficient to exclude the least beneficial relay nodes to the source node. By

necessary, it means that any ri in Lh cannot get further discarded in the following

Uri
maximization process; While by sufficient, it means that, even if we keep rj

that satisfies the rejection criteria in Lh, it is still discarded in the following Urj

maximization process.

Proof. We first prove the sufficient part. Assume the relay rejection criteria apply

to some relay node rj, i.e., ( ∂Us

∂Prj
) < 0, when Pri

= 0, and pi = ci,∀i. Since Us is

concave in {Pri
}N

i=1, rj’s optimal power allocation P ∗
rj

< 0. Suppose source s does
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not exclude relay rj and in the following price update process, all remaining relay

nodes gradually increase their prices to get more utilities. To prove that the new

resulting P ∗new
rj

< 0, it suffices to prove ∆P ∗
rj

< 0, where ∆P ∗
rj

denotes the increase

of P ∗
rj

when each relay node ri increase pi by a very small positive amount from the

cost ci. This can be verified equivalent by proving

∑

i6=j

∂P ∗
rj

∂pi

+
∂P ∗

rj

∂pj

∣∣∣
{pi=ci, ∀i}

< 0. (5.36)

We know

∂P ∗
rj

∂pi

=

√
AjBj

pj

Y +
√

Y 2 + 4XW ′

2X

(
1

2pi

√
piAiBi√

Y 2 + 4XW ′

)
> 0, (5.37)

and

∂P ∗
rj

∂pj

=

√
AjBj

pj

Y +
√

Y 2 + 4XW ′

2X

(
− 1

2pj

) (
1−

√
pjAjBj√

Y 2 + 4XW ′

)
< 0, (5.38)

so it suffices to prove (5.36) by proving the following

∑

i6=j

(
1

2pi

√
piAiBi√

Y 2 + 4XW ′

)
<

(
1

2pj

) (
1−

√
pjAjBj√

Y 2 + 4XW ′

)∣∣∣
{pi=ci, ∀i}

. (5.39)

Without loss of generality, assuming the selected relay nodes generally share similar

properties, i.e., ci = cj = c, ∀i 6= j, then we can prove (5.39) by the following

inequality

∑

i6=j

1

2pi

√
piAiBi√

Y 2 + 4XW ′ <
1

2c

∑

i6=j

√
piAiBi

Y

=
1

2pj

(
1−

√
pjAjBj

Y

)
<

1

2pj

(
1−

√
pjAjBj√

Y 2 + 4XW ′

)
.

(5.40)

So in the following price increasing process, rj is still discarded by the source node

by observing P ∗new
rj

< 0.
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Next, we prove the necessary part. In each round, any two relay nodes rk and

ri update their prices in two consecutive steps. First, rk increases its price p∗k to

the new optimal p∗new
k , then, by (5.37), the resulting P ∗new

ri
is larger than P ∗

ri
, where

P ∗
ri

> 0. Thus, P ∗new
ri

> 0, which means ri won’t be discarded if rk increases pk.

Second, after pk is increased, ri increases its own price pi. In (5.34), assuming p̄i is

the price for ri such that P ∗
ri

= 0 when the other relay nodes’ prices are fixed, we

have

∂Uri

∂pi

∣∣∣
pi→p̄i

< −Bi +

√
AiBi

p̄i

Y +
√

Y 2 + 4XW ′

2X
→ 0. (5.41)

By Property 3, the optimal price p∗i such that
∂Uri

∂pi
= 0 must satisfy ci < p∗i < p̄i.

This means to maximize Uri
, ri asks a lower price than p̄i to avoid being rejected

by the source node. N

If relay node ri gets selected by the source node, due to the concavity of Uri

proved in Property 3, ri can always find its optimal price p∗i ∈ (ci,∞), and thus

Uri
(p∗i ) ≥ Uri

(pi), ∀ri ∈ Lh. Together with Property 1, we conclude the following

theorem.

Theorem 1: The pair of {P ∗
ri
}N

i=1 in (5.25) and {p∗i }N ′
i=1 in (5.28) are the SE for

the proposed game, where the SE is defined in (5.29) and (5.30).

In the next subsection, we will show that the SE is unique, and the proposed

game converges to the unique SE when each relay node updates its price according

to a simple function.
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5.2.4 Distributed Price Updating

From the previous subsection, one relay node needs to modify its own price,

after the other relay nodes change their prices. Consequently, for every ri ∈ Lh,

relay node ri updates pi so that its utility Uri
satisfies the following equality,

∂Uri

∂pi

=
∂

∂pi

[(pi − ci)P
∗
ri
] = P ∗

ri
+ (pi − ci)

∂P ∗
ri

∂pi

= 0, (5.42)

with equality holds if and only if pi reaches the optimum.

After re-arranging (5.42), we have

pi = Ii(p)
4
= ci −

P ∗
ri

∂P ∗
ri
/∂pi

. (5.43)

In order to calculate pi in (5.43), each relay node ri listens to the instantaneous

feedback information about P ∗
ri

and ∂P ∗
ri
/∂pi from the source node, which is similar

to the needed information exchange in iterative power control [Yat95]. Then, the

updating of the relay nodes’ prices can be described by a vector equality of the form

p = I (p), (5.44)

where p = (p1, · · · , pN ′), with pi denoting relay node ri’s price; I (p) = (I1(p), · · · ,

IN ′(p)), with Ii(p) representing the price competition constraint to ri from the other

relay nodes. Therefore, for the N ′ relay nodes in set Lh with competition constraints

in (5.44), the iterations of the price updating can be expressed as follows,

p(t + 1) = I (p(t)). (5.45)

Remark: If K source nodes, denoted by S = {s1, s2, · · · , sK}, exist in the

network, assuming that the price of relay node ri when it helps source node sk is
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psk
i with corresponding power P sk

ri
, then the buyer-level game for each source node

sk is essentially the same as the single-buyer case. However, the seller-level game

becomes more complicated, because now relay node ri needs to choose K prices,

{psk
i }sk∈S , in order to maximize its utility

Uri
=

∑
sk∈S

(psk
i − ci)P

sk
ri

. (5.46)

If the relay nodes treat all source nodes equally with psk
i = pi, ∀sk ∈ S, i.e.,

relay node ri asks a uniform price pi no matter which source node it helps, then

utility Uri
is simplified as

Uri
= (pi − ci)

∑
sk∈S

P sk
ri

, (5.47)

and the proposed algorithm is still applicable, with the modified price updating

function

pi = Ii(p)
4
= ci −

∑
sk∈S P

s∗k
ri∑

sk∈S ∂P
s∗k
ri /∂pi

. (5.48)

However, if the relay nodes treat the source nodes differently, then each relay

node ri needs to update K prices, {psk
i }sk∈S , using the following updating function

psk
i = Ii(p

sk)
4
= ci − P

s∗k
ri

∂P
s∗k
ri /∂pk

i

. (5.49)

Therefore, if there are multiple source nodes in the network, the propose al-

gorithm is still applicable: the buyer-level game of each source node is essentially

the same as the single-source case; the only change is in the seller-level game of the

relay nodes, where the price updating function is modified as in (5.48) or (5.49).

We show next the convergence of the iterations in (5.45) by proving that the

price updating function I (p) is a standard function [Yat95].
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Definition 2: A function I (p) is standard, if for all p ≥ 0, the following

properties are satisfied [Yat95]:

• Positivity: I (p) > 0,

• Monotonicity: If p ≥ p ′, then I (p) ≥ I (p ′),

• Scalability: For all α > 1, αI (p) > I (αp).

Proposition 2: The price updating function I (p) is standard.

Proof. Positivity: By Property 2,
∂P ∗ri

∂pi
< 0. Moreover, if ci > 0 and Pri

≥ 0, then

by the definition of (5.43), Ii(p) ≥ ci > 0. So in real price updating process, each

relay node starts increasing its price from ci.

Scalability: Comparing αI (p) and I (αp) in an element-wise manner, we have

αIi (p)− Ii (αp) = (α− 1) ci + α

[
Pri (αp)

∂Pri (αp)/∂pi
− Pri (p)

∂Pri (p)/∂pi

]
. (5.50)

Since α > 1, (α − 1)ci > 0. Then the problem reduces to proving the second term

in the RHS of (5.50) is positive.

If we define Fi(W
′) as follows,

Fi

(
W ′) =

Pri (p)
∂Pri (p)/∂pi

=

(
1− Bi√

AiBi
pi

Y +
√

Y 2+4XW ′
2X

)
×

[
− 1

2pi

(
1−

√
piAiBi√

Y 2 + 4XW ′

)]−1

,

(5.51)

then we can get

Pri (αp)
∂Pri (αp)/∂pi

=

(
1− Bi√

AiBi
pi

Y +
√

Y 2+4XW ′/α

2X

)
×

[
− 1

2pi

(
1−

√
piAiBi√

Y 2 + 4XW ′/α

)]−1

= Fi

(
W ′/α

)
.

(5.52)
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Thus, to prove the positivity of the second term of RHS of (5.50) is equiva-

lent to prove Fi(
W ′
α

) > Fi(W
′), where W ′

α
< W ′. Since Fi(W

′) is continuous and

differentiable in W ′, we only need to prove ∂Fi

∂W ′ < 0. Expanding ∂Fi

∂W ′ , we get

∂Fi

∂W ′ =8Xpi ×
(√

AiBi

pi

√
Y 2 + 4XW ′

)−1

×
(√

Y 2 + 4XW ′ −
√

piAiBi

)−2

×
(
Y +

√
Y 2 + 4XW ′

)−2
×

[
−XBi

(
Y 2 + 4XW ′ + Y

√
piAiBi

)

+
1
2
AiBi

(
Y +

√
Y 2 + 4XW ′

)2
]
.

(5.53)

The first four terms of the RHS of (5.53) are all positive. After extensive numerical

tests for a wide range of parameters when the nodes are randomly located, we

observe that the last term in the square brackets is negative. Then, the ∂Fi

∂W ′ in

(5.53) is less than zero. Therefore, we can claim that αI (p) > I (αp).

Monotonicity: Suppose p and p ′ are different price vectors, and the vector

inequality p ≥ p ′ means pi ≥ p′i, ∀i ∈ {1, · · · , N ′}. If ∀i 6= j, i, j ∈ {1, · · · , N ′},

Ij([p1 · · · pi · · · pj · · · pN ′ ]) ≥ Ij([p1 · · · p′i · · · pj · · · pN ′ ]), and Ii([p1 · · · pi · · · pj · · · pN ′ ]) ≥

Ii([p1 · · · p′i · · · pj · · · pN ′ ]), then monotonicity can be shown to hold. So the problem

reduces to proving ∂Ij (p)/∂pi ≥ 0 and ∂Ii (p)/∂pi ≥ 0. Expanding and reorganiz-

ing ∂Ij (p)/∂pi to express it as a product of a positive term and a second term, we

get

∂Ij (p)
∂pi

=
1
pi

√
piAiBi√

Y 2+4XW ′

1
pj

(
1−

√
pjAjBj√

Y 2+4XW ′

) ×
[
1−

(√
AjBj

pj

Y +
√

Y 2+4XW ′
2X −Bj

)

(√
AjBj

pj

Y +
√

Y 2+4XW ′
2X

)

×

(
1−

√
pjAjBj√

Y 2+4XW ′ +
Y
√

pjAjBj

Y 2+4XW ′

)

(
1−

√
pjAjBj√

Y 2+4XW ′

)
]
.

(5.54)

The first term of the RHS of (5.54) is positive, to decide the sign of the second
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term, it suffices to compare the difference of the denominator and numerator of the

fraction inside the square brackets, which are both positive. By using
√

AiBi

pi
< XBi

Y

proved in the scalability property, we can finally show that
(√

AjBj

pj

Y +
√

Y 2 + 4XW ′

2X

) (
1−

√
pjAjBj√

Y 2 + 4XW ′

)

−
(√

AjBj

pj

Y +
√

Y 2 + 4XW ′

2X
−Bj

)
×

(
1−

√
pjAjBj√

Y 2 + 4XW ′ +
Y

√
pjAjBj

Y 2 + 4XW ′

)

> Bj

(
1− 2

√
pjAjBj√

Y 2 + 4XW ′ +

√
pjAjBj

√
pjAjBj

Y 2 + 4XW ′

)
= Bj

(
1−

√
pjAjBj√

Y 2 + 4XW ′

)2

> 0,

(5.55)

so
∂Ij(p)

∂pi
> 0. Similarly, we can also prove ∂Ii(p)

∂pi
> 0, so monotonicity holds for the

price updating function. Finally, from the above three parts, we prove that the price

updating function is standard. N

In [Yat95], a proof has been given that starting from any feasible initial power

vector p, the power vector I n(p) produced after n iterations of the standard power

control algorithm gradually converges to a unique fixed point. As we have discussed

in Section 5.2.1, it is natural for the relay nodes to initialize the prices as pi = ci,

because lowering pi below ci will result in a negative utility Uri
, while by setting pi

above ci, relay node ri may be at the risk of being excluded by the source node at

the very beginning. So we assume that the initial price vector is c = (c1, · · · , cN ′),

where ci is the cost per unit of power for relay node ri, as introduced in eqn.

(14). Therefore, we can conclude that starting from the feasible initial price vector

c = (c1, · · · , cN ′), the iteration of the standard price updating produces a non-

decreasing sequence of price vectors I n(c) that converges to a unique fixed point

p∗.
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From eqn. (37), we know that, for relay node ri ∈ Lh, its utility Uri
satisfies

∂Uri

∂pi
= 0 every time after ri updates its price pi given the feedback of

∂P ∗ri

∂pi
from the

source. After the vector I n(p) converges to p∗, no relay can gain a higher utility

by further varying its price, meaning
∂Uri

∂pi
= 0 for ∀ri ∈ Lh. From eqns. (27) and

(28), we know that p∗ is exactly the optimal price vector. As Property 1 shows,

Us is concave in Pri
, so the source node can gradually increase the power from 0

and find the optimal P ∗
ri
. Thus, if the prices of all the selected relay nodes converge

to their optima, then the source node will correspondingly buy the optimal power.

Therefore, once I n(p) converges to p∗, Pri
and pi converges to the SE. It is worth

mentioning that although the closed-form solutions {P ∗
ri
}N

i=1 in (5.25) and {p∗i }N ′
i=1

in (5.28) are functions of the channel-state information, in practical implementation

of the game, the source node can find the optimal power amount by gradually

increasing the purchased power from each relay node until Us reaches its maximum

due to Property 1. Actually the reason why we express the closed-form solution

{P ∗
ri
}N

i=1 as a function of CSI is just to show that the relay node’s utility Uri
is

concave in pi (Property 3 ), and hence to prove that the relay nodes can utilize

the proposed price updating algorithm and gradually converge to the optimal price

{p∗i }N ′
i=1 (Proposition 2 ). Hence, the only signallings between an individual relay

node and the source node are the instant price and corresponding power, and no

CSI is needed. Moreover, there is no price information exchange between the relay

nodes. Therefore, the proposed game achieves its equilibrium in a distributed way

with local information.
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5.2.5 Comparison with the Centralized Optimal Scheme

In order to demonstrate the performance of the proposed game-theoretic scheme,

we first investigate a centralized optimal power allocation problem with closed-form

solutions. Then, we illustrate the numerical comparison of the performance in Sec-

tion 5.3.

Suppose the system resources are shared by all available N relay nodes. From

[ZAL06], we can model the centralized optimal power allocation problem as follows,

max
Pri

W

N + 1
log2

(
1 +

Γs,d +
∑N

i=1 Γs,ri,d

Γ

)
(5.56)

s.t.
N∑

i=1

Pri
≤ P tot

r , 0 ≤ Pri
≤ Pmax

ri
∀i,

where Γs,d and Γs,ri,d are defined in (5.3) and (5.8) respectively.

Because log2(1 + x) is a strictly increasing function of x, reorganizing the

objective function of (5.56), we can get an equivalent optimization problem as in

[ZAL06],

min
N∑

i=1

P 2
s a2

i + Psai

Psai + Pri
bi + 1

(5.57)

s.t.
N∑

i=1

Pri
≤ P tot

r , 0 ≤ Pri
≤ Pmax

ri
∀i,

where ai =
Gs,ri

σ2 and bi =
Gri,d

σ2 .

The solution of (5.57) can be solved as

Pri
=




√
P 2

s a2
i + Psai

bi

λ− Psai + 1

bi




P max
ri

0

, (5.58)

where λ is a constant chosen to meet the total power constraint and (x)u
l is defined
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as

(x)u
l =





l, x < l;

x, l ≤ x ≤ u;

u, u < x.

(5.59)

In order to make a fair comparison, in the proposed scheme, we can change

a, the gain per unit of the rate, to equivalently reflect different P tot
r constraints as

in the centralized scheme. The reason is explained as follows. When a is so large

that the total payment M in Us is negligible, Us ≈ aRs,r,d, then the optimal power

consumption of the problem in (5.13) will be P ∗
ri
→ ∞. It is equivalent to have

P tot
r → ∞ in the centralized scheme. On the contrary, when a is so small that

the total gain of the rate aRs,r,d in Us is negligible, Us ≈ −M = −∑
i piPri

, then

in this case we get P ∗
ri

= 0. It is equivalent to have P tot
r = 0 in the centralized

scheme. Therefore, by varying a in a large range, we can get the optimal achievable

rates corresponding to different total power consumptions and fairly compare the

performance with that of the centralized scheme2.

In the following, we sketch the analytical comparison between the centralized

optimization scheme and the proposed distributed game. First, according to (5.56),

we can represent the Lagrangian of the centralized optimal scheme as follows,

Lcen(Pr, λ, ν) =Rs,r,d +
N∑

i=1

νi(−Pri
) +

N∑
i=1

λi(Pri
− Pmax

ri
)

+ λN+1(
N∑

i=1

Pri
− P tot

r ),

(5.60)

where the Lagrangian multipliers are λ = (λ1, · · · , λN+1), and ν = (ν1, · · · , νN),

with λi, νi ≥ 0. In the proposed game, each node maximizes its own utility defined

in eq. (5.13) and (5.15), so we can equivalently view the objective as a vector
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optimization, and the scalarization can be represented in the following

max Us +
N∑

i=1

wiUri
(5.61)

s.t 0 ≤ Pri
≤ Pmax

ri
, i = 1, · · · , N, (5.62)

pi ≥ 0, i = 1, · · · , N, (5.63)

where w = (w1, · · · , wN) is any weight vector, and wi > 0, ∀i. Similarly, we can

express the Lagrangian for the scalarized optimization as

L̃game(Pr,p, λ̃, ν̃, µ̃) =Us +
N∑

i=1

wiUri
+

N∑
i=1

µ̃i(−pi)

+
N∑

i=1

ν̃i(−Pri
) +

N∑
i=1

λ̃i(Pri
− Pmax

ri
),

(5.64)

where the Lagrangian multipliers are λ̃ = (λ̃1, · · · , λ̃N), µ̃ = (µ̃1, · · · , µ̃N), and

ν̃ = (ν̃1, · · · , ν̃N), with λ̃i, µ̃i, ν̃i ≥ 0, ∀i.

Substituting (5.13) and (5.15) into (5.64), after some manipulation, L̃game(Pr,

p, λ̃, ν̃, µ̃) becomes

L̃game(Pr,p, λ̃, ν̃, µ̃) =aRs,r,d +
N∑

i=1

[wi(pi − ci)− pi]Pri
−

N∑
i=1

µ̃ipi

+
N∑

i=1

ν̃i(−Pri
) +

N∑
i=1

λ̃i(Pri
− Pmax

ri
).

(5.65)

Since a > 0 and for simplicity, the above Lagrangian can be further converted

to

L̃′game(Pr,p, λ, ν, µ) =Rs,r,d +
N∑

i=1

[wi(pi − ci)− pi]

a
Pri

−
N∑

i=1

µ̃i

a
pi

+
N∑

i=1

ν̃i

a
(−Pri

) +
N∑

i=1

λ̃i

a
(Pri

− Pmax
ri

).

(5.66)

Comparing eq. (5.60) and (5.66), we can find they have similar terms, which can be

viewed as one-to-one mappings, i.e., λi ↔ λ̃i

a
, νi ↔ ν̃i

a
, and λN+1(

∑N
i=1 Pri

−P tot
r ) ↔
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Figure 5.2: Comparison of optimal relay power of the game and the centralized

scheme.

1
a

(∑N
i=1 [wi(pi − ci)− pi]Pri

−∑N
i=1 µ̃ipi

)
. Without loss of generality, let us view a

as a parameter in the proposed game, and correspondingly P tot
r a parameter in the

centralized optimal scheme. When a increases, 1
a

(∑N
i=1 [wi(pi − ci)− pi]Pri

−∑N
i=1 µ̃ipi

)

decreases. In order to map λN+1(
∑N

i=1 Pri
− P tot

r ) to it, P tot
r should increase. That

is the reason why varying the parameter a in the proposed game is equivalent to

varying P tot
r in the centralized optimization. To justify our claim, we show the opti-
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mal powers versus P tot
r and a of the two schemes in Figure 5.2, with or without the

Pmax
ri

constraints, respectively. From both the simulation and the above analysis,

we can see that due to the equivalence of the Lagrangian in the two approaches,

the proposed game can achieve comparable performance to that in the centralized

optimal scheme.

However, the centralized optimal power allocation scheme needs considerable

overheads and signaling, because it requires that the complete channel-state infor-

mation (CSI), i.e., Gs,d, Gs,ri
and Gri,d available. In Section 5.3, we show that our

proposed distributed scheme can achieve comparable performance while the needed

signaling between the source node and the relay nodes is only the information about

the prices and the power consumptions.

5.3 Simulation Studies

To evaluate the performance of the proposed scheme, in what follows, the

simulation results for a one-relay case, for a two-relay case, and for a multiple-relay

case are to be shown. Then we provide the performance comparisons of the proposed

approach with the centralized optimal scheme. Finally, we discuss the effect of the

bandwidth factor.

2We do not include explicitly the constraints on the relay nodes’ power in the proposed game

for ease of analysis. From the simulation in the next section and analytical proof in Appendix

??, it will be shown that the game will achieve comparable performance when we consider the

constraints on relay nodes’ power.
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5.3.1 One-Relay Case

There are one source-destination node pair (s, d) and one relay node r in the

network. Destination node d is located at coordinate (0m, 0m), and source node s

is located at coordinate (100m, 0m). We fix the y-coordinate of relay node r at 25m

and its x-coordinate varies within the range of [−250m, 300m]. The propagation loss

factor is set to 2. The transmit power Ps = 10mW, the noise level is σ2 = 10−8W,

and we select the capacity gap Γ = 1, W = 1MHz, the gain per unit of rate a = 0.01

and the cost per unit of power c = 0.2.

In Figure 5.3(a), we show the optimal price for relay node r and the optimal

power bought by source node s, respectively. In this simulation, relay node r moves

along a line. We observe that when relay node r is close to source node s at

(100m, 0m), the source can gain a higher Us in the game, so the relay can more

efficiently help source node s. However, the relay cannot arbitrarily select its price

in order to improve its utility. As we have shown in Property 2 and Property 3, the

optimal power P ∗
r the source buys from relay node r is decreasing with p, and node

ri’s utility Uri
is concave in p. Since the objective of the relay node is to maximize

its utility Ur, the price p should be carefully selected instead of an arbitrarily large

value. As decreasing price p can attract more buying from the source, relay node

r reduces its price to enhance its utility Ur. When relay node r moves close to

destination node d at (0m, 0m), relay node r can use very small amount of power

to relay source node s’s data, so relay node r sets a very high price in order to get

more profits by selling this small amount of power. However, even the price is higher
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than that when r is closer to the source, the utility Ur is still lower when the relay

is close to the destination. When relay node r keeps moving away from destination

node d, source node s stops buying services because asking for relay node r’s help

is no longer beneficial to source node s. Similarly, when relay node r moves in the

opposite direction and locates far away from source node s, s would not buy services

either.

In Figure 5.3(b), we show, respectively, the optimal utilities relay node r and

source node s can obtain using the proposed game. When relay node r is close to

source node s, both r and s can get their maximal utilities. The reason is that

around this location, relay node r can most efficiently help source node s increase

its utility, and the optimal price of relay node r is lower than that when r is at other

locations. So source node s buys more power, resulting in a higher utility to relay

node r.

5.3.2 Two-Relay Case

We also set up two-relay simulations to test the proposed game. In the simu-

lations, the coordinates of s and d are (100m, 0m) and (0m, 0m), respectively. Relay

node r1 is fixed at the coordinate (50m, 25m) and relay node r2 moves along the line

from (−250m, 25m) to (300m, 25m). For each ri, we set ci = 0.1. Other settings are

the same as those of the one-relay case.

In Figure 5.4, we can observe that even though only r2 moves, the prices of

both the relay nodes change accordingly, and s buys different amounts of power
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from them. This fact is because the relay nodes influence and compete with each

other in the proposed game. When relay node r2 is close to d at (0m, 0m), it sets

a very high price as explained in the one-relay case. Accordingly, r1 increases its

price and P ∗
r1

slightly decreases. When r2 is close to s at (100m, 0m), r2 is more

suitable to help s than r1, and U∗
r2

is very high. Hence, in order to attract source s

to buy its service, r1 reduces its price a lot, but U∗
r1

still drops. Because r2 close to

s results in the most efficient help to s from the relay nodes, both Us and M reach

their maxima around this location. As r2 moves far away from s or d, r2’s price

drops because r2 is less competitive than r1. When its utility is less than 0, r2 quits

the competition and P ∗
r2

= 0mW. At that moment, r1 can slightly increase its price

since there is no competition. However, source node s will buy slightly less power

from r1. This fact suppresses the incentive of r1 to ask arbitrarily high price in the

absence of competition, otherwise r2 will rejoin the competition. At the transition

point when r2 quits, Ur1 is smooth. Note that when r2 moves to (50m, 25m), the

same location as r1, the power consumptions, the prices and the utilities of both the

relay nodes are the same. This is because the source node is indifferent for the two

relay nodes locating together and treats them equally.

5.3.3 Multiple-Relay Case

We then set up multiple-relay simulations to test the proposed game. The coor-

dinates of the source node and the destination node are (100m, 0m) and (0m, 0m), re-

spectively, and the relay nodes are uniformly located within the range of [−50m, 150m]
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in x-axis and [0m, 20m] in y-axis. From Figure 5.5, we can observe that as the to-

tal number of the available relay nodes increases, the competitions among the relay

nodes become more severe, so the average price per relay node decreases. The source

node increases the amount of average power purchase when the number of the relay

nodes is not so large (less than 3), because the average price is decreased. When

the number of the relay nodes becomes larger (greater than 3), the source node

decreases the amount of average power purchase, because it buys power from more

relay nodes. Correspondingly, the total payments are shared by more relay nodes,

which leads to less average payment from the source node. Thus, the source node

obtains an increasing utility.

5.3.4 Convergence Speed of the Game

As described in Section 5.2.4, the relay nodes start increasing their price pi

from ci after the N ′ more beneficial relay nodes have been selected by the source

node. Denote the price vector at time t as p(t) = (p1(t), p2(t), · · · , pN ′(t)). From

(5.25), the optimal power purchased by the source node at time t can be denoted as

P ∗
ri
(t) := P ∗

ri
(p(t)) = P ∗

ri
(p1(t), p2(t), · · · , pN ′(t)). (5.67)

In order to obtain ∂P ∗
ri
/∂pi and update their prices by (5.43), the selected relay

nodes will simultaneously increase each pi(t) by a small amount δi. The source node

receives this price updating, and calculates ∂P ∗
ri
/∂pi using the following approxima-

tion

∂P ∗
ri

∂pi

' P ∗
ri
(p1(t), · · · , pi(t) + δi, · · · , pN ′(t))− P ∗

ri
(p(t))

δi

. (5.68)
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Figure 5.6: Observation of convergence speed.

Substituting the above approximation signalled from the source node into (5.43),

where the numerator P ∗
ri
(t) is as defined in (5.67), the relay nodes can obtain

p(t + 1) = I(p(t)). In the above updating process, the source node can signal

the approximated derivatives calculated by (5.68) to all the relay nodes at one time,

and need not interact with them one by one. So this process can be viewed as one

iteration, and does not depend on the number of relay nodes. Then we conducted

simulations when 2 to 4 relay nodes are available to help the source node, and ob-

serve the convergence behavior of the proposed game. In Figure 5.6(a), it is seen
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that the proposed scheme has fast convergence to the Stackelberg Equilibria p∗. It

takes less than 15 iterations until the price vector p converges to the optimum when

there are 2 relay nodes in the system for a = 1, where a denotes the gain per unit

of rate as defined in (5.11), and less than 10 iterations for a = 0.2. In addition,

in Figure 5.6(b), the convergence behavior of Rs,r,d to the optimized transmission

rate using Pr
∗ and p∗ appears to be exponentially fast. Finally, we keep a = 1,

increase the number of relay nodes to 3 and 4, and show the convergence behavior

of the prices in Figure 5.6(c) and 5.6(d), respectively. We can see the number of

iterations until convergence happens almost keeps the same as there are more relay

nodes existing in the system.

5.3.5 Comparison with the Centralized Optimal Scheme

To compare the performance of the proposed game with the centralized scheme,

we set up two simulations as follows. There are two relay nodes and one (s, d) pair.

One of the relay nodes is fixed at coordinate (50m, 25m) and the other node is fixed at

(60m, 25m) and (40m, 25m) in the two simulations, respectively. For the centralized

scheme defined in (5.56), we set Pmax
ri

= 10mW, and let P tot
r vary within the range of

[10, 20]mW. Then, we can obtain a curve of the maximal rates versus different total

power consumption constraints. For the distributed scheme, as explained in Section

5.2.5, by varying a and including the same constraint Pmax
ri

= 10mW on Pri
, we can

also get different total power consumptions and corresponding maximal rates. From

Figure 5.7(a) and 5.7(b), we observe that the proposed game achieves almost equal
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rates as the centralized scheme under the same total power consumptions.

5.3.6 Effect of the Bandwidth Factor

As explained in Section 5.1.1, for the network with a limited bandwidth, the

bandwidth should be divided for the source node and the relay nodes. If N ′ out of

the total N available relay nodes are selected by the source node, where N ′ ≤ N ,

then γL = 1
N ′+1

in (5.10), indicating the bandwidth factor decreases as more relay

nodes help the source node. Thus, using less relay nodes among the selected N ′ relay

nodes may further increase Us for the source node. Therefore, for the networks with

a limited bandwidth, it is not sufficient for the source node to implement only one

round of relay selection. Instead, after source node s selects N ′ relay nodes using

the relay rejection criteria, s continues to try different subsets of the N ′ selected

relay nodes, get the corresponding optimal utility U∗
s for each trial, and choose the

subset of relay nodes that results in the largest U∗
s . In this subsection, we set up

simulations to observe the effect of the varying bandwidth factor.

We set a = 0.85, relay node r1 is at (100m, 5m), and r2 moves along the line

between points (−250m, 5m) and (300m, 5m). In Figure 5.8, we show the optimal U∗
s

obtained by the source node under four scenarios, i.e., when no relay node, only r1,

only r2, and both relay nodes are available to help, respectively. We see that when r2

moves close to r1 and the source node s, i.e., the x-coordinate of r2 lies in the interval

of (85m, 115m), both r2 and r1 are beneficial to node s. Moreover, as explained in

the multiple-relay case in Section 5.3.3, since there is competition between two relay
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nodes, the average power bought from the relay node is much greater, while the

average payment is lower, compared with the 1-relay case. Hence, although γL is

only 1/3, Us(r1, r2) is still greater than Us(rionly), for i = 1, 2, and both relay nodes

are selected. When r2 moves farther away from s, r2 is less beneficial, asks a higher

price, and r1 is also influenced to ask a higher price. So Us(r1, r2) decreases, and

becomes smaller than Us(r1only) where γL is 1/2. So choosing r1 only is better

than choosing both relay nodes. When r2 keeps moving away from s, it is no longer

beneficial for the source node s to select it to help. So r2 will be rejected, and the

bandwidth factor jumps from 1/3 to 1/2. So there are two bumps of Us(r1, r2) when

the x-coordinate of r2 is about -70m and 140m.
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5.4 Summary

In this chapter, we propose a game-theoretic approach for distributed resource

allocation over multiuser cooperative communication networks. We target for an-

swering two questions: who will be the relays and how much power for the relays to

transmit for the cooperative transmission. We employ a Stackelberg (buyer/seller)

game to jointly consider the benefits of the source node and the relay nodes. The

proposed scheme not only helps the source node optimally choose the relay nodes

at better locations but also helps the competing relay nodes ask optimal prices

to maximize their utilities. From the simulation results, relay nodes closer to the

source node can play a more important role in increasing the source node’s utility,

so the source node buys more power from these preferred relay nodes. If the total

number of the available relay nodes increases, the source node can obtain a greater

utility value and the average payment to the relay nodes shrinks, due to more severe

competitions among the relay nodes. It is also shown that the distributed resource

allocation can achieve comparable performance to that of the centralized scheme,

without requiring knowledge of CSI. The proposed Stackelberg-game based frame-

work can be extended as a building block in large-scale wireless ad hoc networks to

stimulate cooperation among distributed nodes.
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Chapter 6

Attacks in Spectrum Sensing

In the Chapter 4, we have analyzed the spectrum sensing game assuming that

all secondary users are selfish by pursuing as high a throughput as possible. But we

assume they will not cause damage to each other. However, it is highly possible that

the secondary users are operating in a hostile environment, where malicious users

intend to attack the legitimate secondary system by interrupting spectrum sensing.

In this chapter, we investigate possible attacks on cooperative spectrum sensing,

analyze their damages, and compare the throughput performance of the spectrum

sensing game with that of individual sensing without cooperation.

6.1 Mask Primary User Signal

As we have discussed in Chapter 3, in dynamic spectrum access, it is usually

required that secondary users’ operation should not conflict or interfere with pri-

mary users. Otherwise, a primary user will prohibit secondary users from utilizing
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the primary band if the detection probability falls below a predetermined threshold

P̄D. This requirement poses vulnerabilities in spectrum sensing if the legitimate sec-

ondary users are induced to cause interference with the primary user [BS08]. From

the malicious attackers’ viewpoint, if they can reduce the received primary signal

strength of the legitimate secondary users, or raise the noise level, the legitimate

users will have greater difficulty in distinguishing between the primary user signal

and noise. This in turn increases the probability of false alarm, and thus the aver-

age throughput of the legitimate secondary users will get reduced according to the

definition in (4.9).

Specifically, if the malicious users increase the noise power on every detection

of the legitimate secondary user from σ2
w to σ̃2

w, in order to guarantee the same

detection probability P̄D, the threshold of the energy detector will be increased to

λ̃ =

[
Q−1(P̄D)

√
2γ̃ + 1

N
+ γ̃ + 1

]
σ̃2

w, (6.1)

with γ̃ = |h|2σ2
s

σ̃2
w

being the received SNR of the primary user under attack. Substi-

tuting this threshold to (4.3), we get the false alarm probability when the primary

signal is masked as

P̃F (P̄D, N, γ̃) = Q
(√

2γ̃ + 1Q−1(P̄D) +
√

Nγ̃
)

. (6.2)

We can see from (6.2) that when the malicious users induce the legitimate

secondary users to interfere with the primary users, the false alarm probability

becomes higher, and the damage to the legitimate users will depend on the noise

power. However, even when the primary signal is masked by the malicious users, the

legitimate users who join in the cooperative sensing game still have a greater chance
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of achieving a higher throughput than those sensing the primary user individually,

because more users are available to share the time spent in sensing. We will show

the comparison via simulations in the next section.

6.2 Report Faulty Sensory Data

Since the cooperative spectrum sensing requires local detection reports from

all contributing secondary users and a certain decision fusion rule to make a fi-

nal judgement, another effective attack is to distort sensory data, especially when

the legitimate secondary users only have limited information about the primary

users’ activity/operation pattern. Although in a centralized cognitive radio network,

public-key authentication and digital signature mechanism [BS08] can validate the

source and integrity of the reported information, verifying distributed cooperative

users would be much more difficult. The malicious users can report by themselves,

or compromise the legitimate secondary users to report, faulty sensory data, which

can lead to belief manipulation [CG08]. Since the legitimate secondary users will

adjust their strategies through strategic interactions, the manipulated beliefs will be

distributed throughout the cognitive radio network, resulting in suboptimal perfor-

mance. In the following, we analyze the damage to the legitimate secondary users

of this attack.

Without loss of generality, we assume Ka malicious users share the total K

sub-bands with another K−Ka legitimate secondary users. Majority rule is adopted

as the decision fusion rule. To degrade the throughput by increasing the false alarm
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probability of the legitimate secondary users, the Ka malicious user pretend to be

very active in contributing to sensing while always report the presence of the primary

user (H1) in every detection without taking any real samples of the primary signal.

Denote the set formed by the legitimate secondary users who contribute to sensing

as Sg
c . By assuming each contributor takes equal responsibility in making the final

decision, i.e., PD,si
is identical for any user si, we obtain the detection probability

under this attack as follows,

P̄D =

Ka+|Sg
c |∑

j=d 1+Ka+|Sg
c |

2
e

(
Ka + |Sg

c |
j

)
P j

D,si
(1− PD,si

)Ka+|Sg
c |−j, (6.3)

because the legitimate users are made to believe Ka users would always contribute

to sensing. From (6.3) we can solve the required P̄D,si
, and get the false alarm

probability for any user si as

PF,si
= Q

(√
2γsi

+ 1Q−1(P̄D,si
) +

√
N/(|Sg

c |+ Ka)γsi

)
, (6.4)

With majority rule, the false alarm probability after decision fusion is given by

PF (Sg
c ) = P

[
at least d1 + Ka + |Sg

c |
2

e out of Ka + |Sg
c | users report H1

∣∣∣∣H0

]
.

(6.5)

Since the Ka malicious users always report H1 in every detection to increase the

false alarm of the legitimate secondary users, the above equation is further reduced

to

PF (Sg
c ) = P

[
at least d1 + |Sg

c | −Ka

2
e out of |Sg

c | good users report H1

∣∣∣∣H0

]
.

(6.6)
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If the legitimate secondary users are clustering together, we can assume they have

similar γsi
’s and PF,si

’s, and write the false alarm probability as

PF (Sg
c ) =

|Sg
c |∑

j=d 1+|Sg
c |−Ka
2

e

(|Sg
c |
j

)
P j

F,si
(1− PF,si

)|S
g
c |−j. (6.7)

Similar to the analysis in Section 4.2.3, the payoff functions for the legitimate sec-

ondary users defined in (4.10)-(4.12) for a symmetric game setting become

U g
C(|Sg

c |) = U0(S
g
c )(1−

τ

Ka + |Sg
c |), (6.8)

and

U g
D(|Sg

c |) = U0(S
g
c ), (6.9)

where U0(S
g
c ) is defined as

U0(S
g
c ) =





PH0 [1− PF (Sg
c )]C, if |Sg

c | ∈ [Ka + 1, K −Ka];

0, if |Sg
c | ∈ [0, Ka + 1].

(6.10)

Then, the average payoff for a legitimate user taking pure strategy C under

attack can be obtained as

Ū g
C(xg) =

K−Ka−1∑
j=0

xj
g(1− xg)

K−Ka−1−jU g
C(j + 1), (6.11)

where xg denotes the probability that a legitimate secondary user contributes to

spectrum sensing when there exist malicious users reporting faulty sensory informa-

tion. Similarly, the average payoff for a legitimate user taking pure strategy D is

given by

Ū g
D(xg) =

K−Ka−1∑
j=0

xj
g(1− xg)

K−Ka−1−jU g
D(j). (6.12)
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We can solve the ESS by equating (6.11) and (6.12). Since the payoff functions share

similar form to those without malicious users, it can be expected that the dynamics

defined in (4.17) converge to the ESS in this case as well. We will show the ESS

after convergence and the resulting average throughput for the legitimate secondary

users in the following section.

6.3 Simulation Studies

In this section, we illustrate the ESS and the average throughput performance

for each legitimate secondary user in a homogeneous sensing game with malicious

users.

Figure 6.1 shows the case when the primary signal is masked by the malicious

user, where the average received SNR is reduced from −12 dB to −19 dB. We

see from the figure that the ESS probability of cooperation is almost the same as

that with no malicious users. However, as the received SNR of the primary user

is reduced, the legitimate users have greater difficulty in correctly detecting the

primary user’s activity, and the average throughput gets heavily reduced. In order

to obtain more precise detection and reduce false alarm, the legitimate users have to

collect more samples, so the optimal value of τ increases from around 0.25 to around

0.55. As more users are available to share the sensing cost, the average throughput

per user in the sensing game is still higher than the single-user sensing under attack.

In Figure 6.2, we show the case where 2 malicious users share a total of K

sub-bands with K − 2 legitimate secondary users. We vary K in the range of [5,11]
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Figure 6.1: ESS and average throughput vs. τ when the primary signal is masked.
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Figure 6.2: ESS and average throughput vs. τ when 2 malicious users report faulty

sensory data.
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and observe the ESS probability of cooperation in Figure 6.2(a) and the average

throughput in Figure 6.2(b). We find that when there are only a few (3 or 4)

legitimate users, the faulty sensory data from the malicious users overwhelms the

correct information from the legitimate users, which makes the legitimate users

believe the primary user is always present and the degree of cooperation of the

legitimate users become 0. Since the belief of the legitimate users are manipulated,

the false alarm probability approaches 1, and the average throughput is 0. However,

when there are more than 4 legitimate users (i.e., K ≥ 7), the faulty sensory data

cannot dominate the decision fusion, and the legitimate users obtain an average

throughput greater than 0. It is interesting that due to the high false alarm created

by the malicious users, the legitimate users will become more cooperative than the

case with no malicious users, because only by more cooperation can the legitimate

users collect more precise sensory data, maintain a lower false alarm probability,

and efficiently utilize the spectrum opportunity.

We illustrate in Figure 6.3 the scenario where 3 malicious users share a total

of K sub-bands with K− 3 legitimate secondary users, with K varying in the range

of [7,13]. We find that as more malicious users exist in the sensing game, more

legitimate users (greater than 8, or K ≥ 12) are needed to combat the damage of

the malicious users, and their probability of cooperation is also higher than that

when there exist no malicious users. In both Figure 6.2 and Figure 6.3, we also

compare the average throughput of the legitimate users in the sensing game under

attack to that of the single-user sensing where his/her decision is not affected by the

malicious users. We find that as long as there are a plenty of legitimate users who
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Figure 6.3: ESS and average throughput vs. τ when 3 malicious users report faulty

sensory data.
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collectively collect enough samples of the primary signal (about τ > 0.4), joining in

the sensing game is still a better choice for the legitimate users than the single-user

sensing, because each user can spend less time in sensing while not badly affected

by the malicious users’ faulty sensory data.

6.4 Summary

In order to avoid conflict with primary users, spectrum sensing has become an

essential functionality of cognitive radios. However, malicious attacks can severely

deteriorates the performance of spectrum sensing.In this chapter, we investigate

possible attacks on cooperative spectrum sensing under the evolutionary sensing

game framework, and analyze their damage both theoretically and by simulations.

Simulation results show that if the primary signal is masked by the malicious users,

the legitimate secondary users need to collectively take more samples to obtain

a better throughput; if malicious users exchange false sensory data to interrupt

decision fusion, more legitimate users are required and they should behave more

cooperatively so as to dominate the false sensory data. It is also shown that the

evolutionary sensing game can still achieve better throughput than that of individual

sensing without cooperation under malicious attacks.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have studied how to design efficient spectrum allocation

scheme in cognitive cooperative wireless networks. We focus on studying the optimal

collaboration strategy of selfish users in forwarding information and cooperative

spectrum sensing for detecting primary users using a game-theoretic framework,

and dynamic spectrum access with statistical modeling that can predict future traffic

patterns and optimize system throughput.

First, we have developed a statistical modeling approach that characterizes the

traffic dynamics for opportunistic spectrum access in licensed spectrum. In order

to improve the spectrum utilization efficiency, secondary users are allowed to access

the spectrum white space in a licensed band. However, if they access the licensed

spectrum too greedily, their throughput will be heavily reduced due to interference

or collisions. Further, dynamics caused by different user activities, e.g., primary
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user re-occupying/vacating the licensed band and secondary users starting/ceasing

a communication session, make it more challenging to optimize spectrum efficiency

in real-time. In this dissertation, we model the traffic variations of the radio envi-

ronment as CTMC that can predict future traffic patterns in the share spectrum.

By optimizing spectrum access probabilities, throughput degradation due to inter-

ference is compensated.

Second, we have investigated how to collaborate in cooperative spectrum sens-

ing for primary user detection. In cooperative spectrum sensing, it may not be opti-

mal to have all secondary users cooperate in every sensing effort. Moreover, sensing

takes energy/time which may be used for data transmission. In self-organizing net-

works, where different secondary users belong to different network controllers and

exchange their local sensory data to make a final decision, the selfish users tend to

overhear the other’s sensing outcomes to reserve more time for their own data trans-

mission. In this dissertation, we study the time evolution of selfish users’ cooperation

behavior and propose an evolutionary cooperative sensing game that converges to

the ESS. With the proposed game, we can obtain the optimal number of cooperating

users only based on users’ own observation of their past throughput. Moreover, the

performance of ESS is better than that having all users always cooperate.

Third, we have studied how to enforce cooperation between source nodes and

relay nodes in cooperative wireless networks. Most existing works on resource alloca-

tion in cooperative networks assume all users belong to the same central authority

that can collect precise CSI of different channels and allocate network resources

to different users. In this dissertation we present a distributed relay selection and
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power control scheme using Stackelberg game, without requiring a central authority.

In the proposed game-theoretic framework, source nodes can find relay nodes that

can better improve the source nodes’ throughput with less cost, and relay nodes

can maximize their revenues from forwarding source nodes’ information as well. In

addition, there is no need to measure and exchange CSI, since relay nodes can adapt

their prices according to the proposed price updating function, which is easy to im-

plement and guaranteed to converge to the optimal operating point. Therefore, the

proposed Stackelberg game reduces communication overhead greatly that is usually

involved in conventional cooperative wireless networking. Moreover, the proposed

scheme is a good candidate for cooperation stimulation in large-scale wireless ad

hoc networks, where users controlled by different operators only aim at maximizing

their own performance.

Finally, we have investigated possible attacks on cooperative spectrum sens-

ing. Since it is highly possible that the secondary users are operating in a hostile

environment, malicious users intend to attack the legitimate secondary system by

interrupting spectrum sensing. In this dissertation, we studied possible attacks on

cooperative spectrum sensing under the evolutionary game framework, analyze their

damages, and compare the throughput performance of the spectrum sensing game

with that of individual sensing without cooperation. It is shown that the evolution-

ary sensing game can still achieve better throughput than that of individual sensing

without cooperation under malicious attacks.
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7.2 Future Work

In this dissertation, we have addressed several critical issues in efficient spec-

trum allocation design for cognitive cooperative networks, where we mainly assume

that users will not do harm to others. However, in practical wireless networks, not

all users will behave well and there exist malicious users who may cause damage

to other users and even ruin the network. Therefore, efficient spectrum allocation

cannot be made possible without considering security enforcement. In this section,

we will list some of the security issues that we would like to address in our future

research.

We plan to continue investigating various security enforcement schemes in

spectrum sensing. Since primary user detection is very sensitive to noise uncertainty,

malicious users in the vicinity of legitimate users may inject jamming pulses to make

primary user detection more difficult. In cooperative spectrum sensing, secondary

users exchange their local sensing outcomes and make a final decision using some

decision fusion rule. Thus, besides always reporting a primary user’s existence,

malicious users can adaptively manipulate their sensory data so that legitimate

users can hardly detect the re-appearance of a primary user, conflict with it and

have difficulty in recognizing the malicious users. In addition, during a sensing

period, all users should stop their transmission and listen to the licensed spectrum.

Malicious users can mimic the primary user signal in the sensing periods so as to

waste the spectrum opportunity. Therefore, we would like to investigate possible

attacks in spectrum sensing, characterize the symptoms when spectrum sensing is
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disturbed by malicious users, locate the malicious users, and exclude them from the

network.

We will also be interested in studying how to secure spectrum allocation and

sharing in different network layers. As secondary users may occupy multiple under-

used licensed bands, whenever the current channel conditions become worse or a

primary user re-appears, they need to re-select a proper spectrum band (i.e., spec-

trum handoff) to resume transmission and guarantee reliable and seamless commu-

nication. If a legitimate user is compromised by malicious users and distorts the

signaling when exchanging information for spectrum handoff, not only may packet

error rate and latency increase, but the other transmitting users may also get im-

paired during the frequency change. Therefore, we plan to systematically investigate

how to design optimal spectrum allocation when there exist inside malicious attack-

ers. In addition, in order to perform spectrum allocation and spectrum handoff

within a network, certain control information should be broadcast to all network

users through a dedicated channel. If control channels are jammed by malicious

users that transmit junk packets using very high power, all information about spec-

trum allocation will be lost, and the entire secondary network will not function

normally. Hence, we plan to design robust spectrum allocation where the channel

control information is broadcast with a proper redundancy and in a randomized

pattern.
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